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The effects of thermal conductivity which depend on temperature are conversely proportional with the linear function of
temperature on free convective flow where the fluid is viscous and incompressible along a heated uniform and the vertical
wavy surface has been examined in this study. The boundary layer equations with the associated boundary conditions that
govern the flow are converted into a nondimensional form by using an appropriate transformation. In the domain of a vertical
plate that is flat, the resulting method of nonlinear PDEs is mapped and then worked out numerically by applying the implicit
central finite difference technique with Newton’s quasilinearization method, and the block Thomas algorithm is well known as
the Keller-box method. The outputs are obtained in the terms of the heat transferring rate, the frictional coefficient of skin, the
isotherms, and streamlines. The outcomes showed that the local heat transferring rate, the local skin friction coefficient, the
temperature, and the velocity all are decreasing, and both the thermal layer of boundary and velocity become narrower with
the rising values of reciprocal variation of temperature-dependent thermal conductivity. On the other hand, the friction
coefficient of skin, the velocity, and the temperature decrease where the friction coefficient of skin and velocity decrease by
43% and 64%, respectively, but the heat transfer rate increases by 61% approximately, and both the boundary layer thermal
and velocity become thinner when the Prandtl number increases.

1. Introduction

In various segments of engineering and science, boundary
layer natural convective flow comes from a surface that is
wavy and vertical, which is greatly advantageous. The flow
is held by the rough surfaces and changes the heat transfer
rate. A kind of heat transfer is natural convection, which
happens only for differences in density in fluid because of
a temperature gradient. The process of natural convection
is governed substantially by three features, which are the
temperature difference in the flow field, the body force,
and the density of fluid alternatives with temperature. In
many applications, the study of heat transferring from a
crooked surface is needed too, as these kinds of surfaces
are frequently stayed. From irregular surfaces, laminar natu-
ral convective flow can be used for transmitting heat in var-
ious heat transferring devices, such as flat-plate condensers
in refrigerators, flat-plate solar collectors, industrial applica-

tions, and other functional clothing designs. Thermal con-
ductivity is a corporal property which may alternate
appreciably with temperature. It is found for liquid that κ;
thermal conductivity differs with temperature where the
range is 0-400°F [1] in an approximate linear manner. Ther-
mal conductivity is one of the key factors in the prediction of
flow behavior. Laminar free convection about the Newto-
nian fluid and transferring heat problems worked by several
checkers due to its considering practicable applications.
Alam et al. [2] explored free convection when magnetic field
was present which was transverse from a vertical surface and
wavy. Free convective flow with MHD field in porous chan-
nels which was opening ended and vertical was presented by
Al-Nimr and Hader [3]. Effects of magnetic field through
vertical stratum on over back convection had observed by
Ahmed and Zaidi [4].

Alim et al. [5] studied the Joule heating effects of MHD
natural convective flow on the combination of conduction
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from a flat vertical plate. MHD flow with natural convection,
heat generation, and viscous dissipation over a sphere was
conducted by Alam et al. [6]. Ahmed et al. [7] investigated
numerically the MHD radiative heat and mass transfer of
nanofluid flow with viscous dissipation and Joule heating
effects towards a vertical wavy surface using the Keller-box
method. Bhavnani and Bergles [8] researched free convec-
tive temperature transport from sinusoidal surface that was
wavy. The impact of gradient physics properties on convec-
tive force was analyzed by Charrudeau [9]. Chen and Wang
[10] examined the micropolar fluids, the force convection
along a surface that was wavy. Free convective MHD flow
with a porous infinite plate and visco-elastic fluid was
explored by Chowdhury and Islam [11]. Cheng [12] demon-
strated the effects of temperature-dependent viscosity from
an isothermal horizontal cylinder with an elliptic cross sec-
tion on natural convective heat transfer. Cengel [13]
observed both mass and heat transfer. The flow in a channel
under the effects of transverse magnetic field during fluid
was studied by Damesh et al. [14]. El-Amin [15] conducted
the coupling reaction of viscous dissolution and heating of
Joule on MHD force convective over a horizontal cylinder
which was nonisothermal that placed in fluid saturated
porous medium. Gray et al. [16] investigated the nature con-
vective flows with vertical, deriving from the coupling of
buoyancy effects of thermal and mass diffusion. Hady et al.
[17] analyzed boundary layer flow of mixed convection with
variety of viscosity on a continuous flat plate.

Hadjadj and Kyal [18] investigated the effects of two
sinusoidal protuberances in a vertical annulus on free con-
vection. Hossain et al. [19] explored for the fluid, the natural
convective flow having thermal conductivity and viscosity
which were dependent on temperature, past a permeable
wedge. Hossain et al. [20] investigated the natural convec-
tion of fluid from a heated vertical wavy surface using
temperature-dependent viscosity. Jang and Yan [21, 22]
observed mixed and natural convective mass and the trans-
fer of heat across a surface that was vertical but wavy. In a
circular cylinder, the magnetohydrodynamics of natural
convective heat flow with thermal radiation and heat gener-
ation effects saturated by nanofluid was evaluated by Javed
et al. [23]. Kays [1] worked with convective mass and heat
transfer. The boundary-layer free-convective flow through
a wavy vertical surface using non-Newtonian fluid was
investigated by Kumari et al. [24]. Mahmud et al. [25] con-
ducted the natural convection with wavy vertical walls
within an enclosure. Molla et al. [26] studied natural convec-
tive flow together with uniform surface temperature across a
vertical surface, which was wavy in the existence of warmth
absorption/creation. Nasrin and Alim [27] worked with free
convective flow under the influence of an MHD field along
with a flat plate that was vertical with viscosity and the ther-
mal conductivity varied with temperature. The variation of
viscosity and thermal conductivity in a vertical plate was
examined numerically by Palani and Kim [28]. Parveen
and Alim [29] explored Joule heat effects on free convective
MHD flow of the fluid within viscosity that was temperature
dependent, which was inversely proportional to temperature
through a vertically wavy surface where temperature was a

linear function. Results of viscosity and thermal conductivity
dependent on temperature on natural convective MHD flow
across a wavy vertical surface were presented by Parveen and
Alim [30].

Rahman and Alim [31] observed numerically the magne-
tohydrodynamic natural convective heat transport flow with
temperature-dependent thermal conductivity through a plate
that was vertical. Free convection, which was influenced by a
vertical surface that was wavy, together with heat flux and uni-
form over a porousmedium, was investigated by Rees and Pop
[32]. An asymmetrical wavy motion of blood with convective
boundary conditions under the influence of entropy genera-
tion was analyzed mathematically by Riaz et al. [33]. Sparrow
and Cess [34] investigated the effects of a magnetic field on
heat transfer that was free convective. Tashtoush and Al-
Odat [35] investigated the effect of a wavy surface magnetic
field on fluid flow and heat within a changeable heat flux. Tajul
and Parveen [36] investigated natural convective flow across a
wavy surface that was vertical in Joule heat presence within the
viscous dissipation and magnetic field effects. Tinni and Parv-
een [37] examined the reciprocal variety of thermal conductiv-
ity and viscosity with temperature on free convective flow
through a vertical surface that was wavy. In a wavy wall chan-
nel, forced convection was explored by Wang and Chen [38].
Wilks [39] presented a strong cross field, magnetohydrody-
namic free convection regarding a plate which was vertical
and semi-infinite. The natural convective transfer of heat from
a wavy vertical surface, which was isothermal, was first
observed by Yao [40–42] and used expanded Prandtl’s trans-
position method and finite-difference technique. For studying
the natural convective heat transfer, he proposed a simple
transformation from an isothermal wavy vertical surface.
From beyond discussion, it is clear that for natural convection,
thermal conductivity is a physical phenomenon that is macro-
scopic and very interesting in fluid dynamics. No earlier stud-
ies had assumed the reciprocal variety of thermal conductivity
on the flow of free convection through a vertical wavy surface.

This learning is to investigate the concept of thermal
conductivity effects, which are conversely proportional to a
linear function of temperature with natural convection
across a wavy vertical surface. It is still established that ther-
mal conductivity can change, notably accompanied by tem-
perature. By applying some suitable transformations, the
partial differential governing equations turn down to the
local partial differential formation, whose boundary condi-
tions are not similar. The equations that are boundary layers
are transformed and numerically solved, making use of the
implicit finite difference technique with the Keller-box
method [43]. We concentrate on the friction of local skin
that is surface shear stress and Nusselt number that is local,
in addition to the rate of transferring heat, the streamlines
and the isotherms for γ, and the variation parameter of ther-
mal conductivity.

2. Formulation of the Problem

Although the boundary layer analysis described below allows
for various values of σðXÞ, our elaborate numerical work
made the assumption that the surface has sinusoidal
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deformations. The surface that is wavy can be narrated by

Yw = σ Xð Þ = α sin nπX
L

� �
, ð1Þ

where the characteristic length of the wave is L which is
related to the surface which is wavy.

The two-dimensional Cartesian coordinate system and
the geometry of the wavy surface are exhibited in Figure 1
(see [30]).

We consider the flow under the usual approximation of
Boussinesq governed by successive equations of boundary
[2, 5, 10, 20, 27, 29, 30]:

Continuity equation:

∂U
∂X

+ ∂V
∂Y

= 0: ð2Þ

Equation of X-momentum:

U
∂U
∂X

+V
∂U
∂Y

= −
1
ρ

∂P
∂X

+ ν∇2U + gβ T − T∞ð Þ: ð3Þ

Equation of Y-momentum:

U
∂V
∂X

+V
∂V
∂Y

= −
1
ρ

∂P
∂Y

+ ν∇2V : ð4Þ

Energy equation:

U
∂T
∂X

+ V
∂T
∂Y

= 1
ρCp

∇: k∇Tð Þ, ð5Þ

where dimensional coordinates (X, Y) of the surface along
with and normal to tangent (U , V) are the components of
velocity which are parallel of X and Y , k is fluid’s thermal
conductivity in the boundary zone which depends on fluid
temperature, and νð= μ/ρÞ is kinematics viscosity.

For this study, the boundary conditions are as follows [2,
5, 10, 20, 27, 29, 30]:

At T = Y Yw = σ xð Þ, T = Tw,U = V = 0:
As Y ⟶∞, T = T∞,U = 0, P  = P∞:

ð6Þ

In the literature, a very few appearances of variations of
thermal conductivity are available. Out of them, we here
consider appropriate one for liquid obtained by Hossain
et al. [19] as follows:

k = k∞
1 + γ∗ T − T∞ð Þ½ � , ð7Þ

where ambient fluid’s thermal conductivity is k∞ and γ∗ are
constants determined at flow’s film temperature T f = 1/2ð
Tw + T∞Þ.

The governing partial differential equations are reduced
to locally nonsimilar partial differential forms for solving

according to the mentioned method by adopting some
appropriate transformations. From Yao [40], now we bring
in the nondimensional variables given as follows:

x = X
L
,

x = Y − σ

L
,

p = L2

ρν2
Gr−1P,

u = ρL
μ∞

Gr−1/2U ,

v = ρL
μ∞

Gr−1/4 V − σxUð Þ,

θ = T − T∞
Tw − T∞

,

σx =
dσ
dX

= dσ
dx

,

Gr = gβ Tw − T∞ð Þ
ν2

L3:

ð8Þ

Into equations (2)–(5) by introducing the above dimen-
sionless variables, the obtained dimensionless governed
equations are as follows:

∂u
∂x

+ ∂v
∂y

= 0, ð9Þ

u
∂u
∂x

+ v
∂u
∂y

= −
∂p
∂x

+Gr1/4σx
∂p
∂y

+ 1 + σx
2À Á ∂2u

∂y2
+ θ,

ð10Þ

σx u
∂u
∂x

+ v
∂u
∂y

� �
= −Gr1/4

∂p
∂y

+ σx 1 + σx
2À Á ∂2u

∂y2
− σxxu

2,

ð11Þ

u
∂θ
∂x

+ v
∂θ
∂y

= 1
Pr

1 + σx
2À Á

1 + γθð Þ
∂2θ
∂y2

−
1
Pr

γ 1 + σx
2À Á

1 + γθð Þ2
∂θ
∂y

� �2
,

ð12Þ

Y

V

G
U

L

X

Tw

T∞

𝛼

Figure 1: Physical model with coordinate system.
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where Pr = Cpμ∞/k∞ is the Prandtl number and γ = γ∗ðTw

− T∞Þ is the thermal conductivity variation parameter.
Equation (11) stipulates that along y-direction the pres-

sure gradient is OðGr−1/4Þ, which implies that from the invis-
cid flow solution along x-direction lowest order pressure
gradient can be set on. This gradient of pressure is zero
(∂p/∂x = 0) for the present problem. Furthermore, equation
(11) exhibits that Gr1/4ð∂p/∂yÞ is Oð1Þ and with the help of
the left-hand side of the equation, it is determined. The
removal of ∂p/∂y from equation (10) to equation (11) thus
induces to as follows:

u
∂u
∂x

+ v
∂u
∂y

= 1 + σ2x
À Á ∂2u

∂y2
−

σxσxx
1 + σ2x

u2 + 1
1 + σ2x

θ: ð13Þ

For the present problem, the corresponding conditions
of boundary are as follows:

At y = 0, θ = 1, u = 0, v = 0:
As y⟶∞, θ = 0, u = 0, p = 0:

)
ð14Þ

We now initiate the conversions given below to bring
down the governed equations to an opportune form as
follows:

η = yx−1/4,
ψ = x3/4 f x, ηð Þ,
θ = θ x, ηð Þ,

ð15Þ

where ψ is function of stream and η is similarity variable of
pseudo that satisfies equation (9).

Into equations (13) and (12), bringing the transforma-
tions which gives in equation (15), the system of nonlinear
equations obtained is presented as follows:

1 + σ2
x

À Á
f ′′′ + 3

4 f f
′′ − 1

2 + xσxσxx

1 + σ2x

� �
f ′2 + 1

1 + σ2
x
θ = x f ′ ∂f

′
∂x

− f ′′ ∂f
∂x

 !
,

1
Pr

1 + σ2
x

À Á
1 + γθ

θ″ − 1
Pr

γ 1 + σ2x
À Á
1 + γθð Þ2

θ′2 + 3
4 f θ

′ = x f ′ ∂θ
∂x

− θ′ ∂f
∂x

� �
: ð16Þ

Now the conditions of boundary (14) become the form
below:

θ x, 0ð Þ = 1,  f x, 0ð Þ = f ′ x, 0ð Þ = 0,
θ x,∞ð Þ = 0,  f ′ x,∞ð Þ = 0:

)
ð17Þ

In practical applications, the physical quantities of prin-
ciple interest are the shearing stress τw and the rate of heat
transfer in terms of the skin friction coefficient Cf x and Nus-
selt number Nux, respectively, which can be written as
follows:

Cf x =
2τw
ρU2 ,

Nux =
qwx

k∞ Tw − T∞ð Þ ,
ð18Þ

where

qw = −k n:∇Tð Þy=0,
τw = μn:∇Uð Þy=0:

ð19Þ

Using the transformations (15) and (19) into (18), Cf x ,
the friction coefficient of the skin and the Nusselt number
where both are local that is the rate of heat transfer Nux,
takes the form below:

Cf x
Gr
x

� �−1/4
=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2x

q
f ″ x, oð Þ,

Nux
Gr
x

� �−1/4
= −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + σ2

x

p
1 + γð Þ θ′ x, oð Þ:

ð20Þ

3. Methodology of the Solution

The study discusses with the incompressible fluid’s free con-
vective flow that is viscous along a wavy vertical surface and
is heated; uniform and variable thermal conductivity inversely
proportional to temperature, which is linear function, has
been investigated by utilizing the implicit finite difference
technique familiar as the Keller-box method, which was intro-
duced by Keller [43]. Recently, this technique has extensively
applied by Hossain et al. [19, 20]. Here, in the implicit finite
difference method (IFDM), we introduce new dependent var-
iables uðξ, ηÞ, vðξ, ηÞ, pðξ, ηÞ, and gðξ, ηÞ to transform
momentum and energy equations, where x = ξ and θ = g are
used for boundary conditions and some suitable values are
used for nondimensional variables. Then, consider the net
rectangle on the (ξ, η) plane for the box scheme. After that,
the transformed momentum and energy equations are calcu-
lated by the finite difference approximations, approximating
the functions and their derivatives in terms of the central dif-
ference approximations according to box method. The above
central difference approximations reduce the system of first
order differential equations to a set of nonlinear difference
equations for the unknown at xi in terms of their values at

Table 1: Comparison of the present numerical results of skin
friction coefficient, f ″ðx, 0Þ, and the rate of heat transfer, -θ′ðx, 0Þ
, with Hossain et al. [20] for the variation of the Prandtl number
Pr while M = 0:0, γ = 0:0, and ε = 0:0 with α = 0:1.

Pr
f ″ x, 0ð Þ -θ′ x, 0ð Þ

Hossain et al.
[20]

Present
work

Hossain et al.
[20]

Present
work

1.0 0.908 0.90814 0.401 0.40101

10.0 0.591 0.59269 0.825 0.82663

25.0 0.485 0.48733 1.066 1.06847

50.0 0.485 0.41727 1.066 1.28879

100.0 0.352 0.35559 1.542 1.54827
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xi−1. The resulting nonlinear systems of algebraic equations
are to be linearized by Newton’s Quassy linearization method.
Iterating higher and substituting, we got the algebraic form of
the linear system. Calculating and having coefficient of
momentum and energy equations and boundary conditions,
the system of linear equations together with the boundary
conditions can be written in matrix or vector form, where
the coefficient matrix has a block tridiagonal structure. The
whole procedure, namely, reduction to first order followed
by central difference approximations, Newton’s quasilineari-
zation method, and the block Thomas algorithm, is well
known as the Keller-box method.

4. Validation of the Code

A comparison of the present numerical results of skin fric-
tion coefficient, f ″ðx, 0Þ, and the rate of heat transfer,
-θ′ðx, 0Þ, with the results obtained by Hossain et al. [20] is
depicted in Table 1. Here, the magnetic parameter M, ther-
mal conductivity parameter γ, and viscosity parameter ε
were ignored while different values of the Prandtl number
Pr = ð1:0, 10:0, 25:0, 50:0, and 100:0Þ are chosen with
amplitude-to-length ratio α = 0:1. From Table 1, it is clearly
seen that the present results are in excellent agreement with
the solution of Hossain et al. [20].
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Figure 2: Variety of (a) Cf x , frictional coefficient of skin, and (b) Nux , heat transferring rate against x, the distance that is dimensionless for
various thermal conductivity values while Pr = 1:0 and α = 0:3.
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Figure 3: Variation of (a) f ′, the velocity profiles, and (b) θ, the dispensation of temperature in oppose to the distanceη that is dimensionless
for distinct values of γ, the variation variable of thermal conductivity while Pr = 1:0 and α = 0:3.
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5. Results and Discussion

The heat transfer rate regarding Nux, the Nusselt number,
the numeric values of Cf x, the friction coefficient of skin,
the isotherms and streamlines, temperature, and velocity
profiles are obtained and presented graphically for γ, various
values of thermal conductivity varying variables ranging
from 0 (the thermal conductivity that is constant) to 0.3
while other controlling parameters, the amplitude-to-
length ratio α = 0:3 and the Prandtl number Pr = 1:0, and
for various Pr, the Prandtl number = 0:73, 1.73, 3.0, 7.0,
and 15.5 with α = 0:3 and γ = 0:05. Here, Pr = 0:73, 1:73,
3:0, 7:00, and 15:5 correspondent, respectively, at 2100°K to
the air and at 100°C, 60°C, and 20°C to water and CaCl2.
In this study, the values of various parameters are chosen
according to analyzing other work and also taking suitability
into account. Some values are chosen up to the point at
which they behave normally. After that value, that is some
more or less value of that parameter, the flow behavior loses
its originality.

Figures 2(a) and 2(b) demonstrate, respectively, the
changes of temperature-dependent skin friction coefficient
and heat transfer rate for the reciprocal variety of thermal
conductivity (γ = 0, 0.1, 0.2, and 0.3) when Pr = 1:0 and α
= 0:3. We know that the higher value of thermal conductiv-
ity (γ) accelerates the fluid flow and so increases Cf x and

Nux. Here, as γ is reciprocal, so the flow behavior will also
reverse its normal attitude. For this reason, when rising γ,
the frictional coefficient of skin and the heat transferring rate
notably decrease along with direction of downstream, the
surface on the way to direction of x axial. The highest values
of Cf x, the frictional coefficient of skin that are local, are
found as 0.92568, 0.91336, 0.90034, and 0.88662 at x = 0:50
for γ = 0, 0.1, 0.2, and 0.3, respectively. Nonetheless, the
maximum values of the heat transfer rate at x = 0:55 are
0.38755 for =0.0, 0.37409 for =0.1, 0.36637 for =0.2, and
0.36369 for =0.3. When the difference between them is from
0.0 to 0.3, the heat transfer rate and skin friction coefficient
decrease by about 6% and 4%, respectively. The high
thermal conductivity speeds up fluid flow that raises the heat
transfer coefficient and, additionally, the frictional coeffi-
cient of skin.

The variation of velocity profile and temperature profile
within the boundary layer for the reciprocal variation of
thermal conductivity (γ = 0, 0.1, 0.2, and 0.3) with tempera-
ture dependent is shown in Figures 3(a) and 3(b), respec-
tively, when Pr = 1:0 and α = 0:3. As γ = γ∗ðTw − T∞Þ and
presently the variation of thermal conductivity is conversely
proportional, the rising value of thermal conductivity decays
temperature variation between the temperature of the sur-
face and the fluid’s ambient temperature. Heat is transferred
then slowly within the boundary layer from the surface to
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Figure 4: Effects of streamlines while Pr = 1:0 and α = 0:3, for (a) γ = 0:0, (b) γ = 0:1, (c) γ = 0:2, and (d) γ = 0:3.
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the fluid. With the increasing value of thermal conductivity,
both temperature and velocity decrease monotonically.
Additionally, the biggest velocities are stored as 0.51730,
0.50709, 0.49662, and 0.48594 for γ = 0, 0.1, 0.2, and 0.3,
respectively, and every one of them happens at the similar
spot of η. It is found that velocity decays approximately by
6% as γ changes from 0 to 0.3.

On the formation of streamlines and isotherms,
Figures 4 and 5 show the effects of thermal conductivity,
which is temperature dependent and whose variation is
reciprocal with different stable variables Pr = 1:0 and α =
0:3. For γ = 0:0, 0.1, 0.2, and 0.3, it can be seen that the max-
imum values of ψ and ψmax are 8.56, 8.41, 4.46, and 4.11,
respectively. Moreover, increasing thermal conductivity
while varying parameters decreases the boundary layer. Orig-
inally, rising γ increases both streamline and isotherm. But for
reciprocal changes, the behavior also goes through reverse.

The effects of various Prandtl numbers (Pr) are equal
to 0.73, 1.73, 3.0, 7.0, and 15.5 while γ = 0:05 and α = 0:3
on friction coefficient of skin, and heat transfer rate has
been illustrated, respectively, in Figures 6(a) and 6(b).
The skin friction coefficient and the heat transfer rate
decrease as the Prandtl number increases. The rising
values of the Prandtl number hasten the decay of the tem-
perature from the surface which is warmed with subse-

quent growth in the heat transferring rate. The highest
local skin friction coefficients are observed as 0.963088
and 0.55011, and the local heat transfer rates are 0.34039
and 0.88817, respectively, for Pr = 0:73 and 15.5. It is clear
that the local skin frictional coefficient decays approxi-
mately by 43%, and the heat transfer rate increases
approximately by 61% as the Prandtl number rises from
0.73 to 15.5.

Figure 7(a) depicts the interactivity of the Prandtl num-
ber on velocity f ′ðx, ηÞ, while Figure 7(b) depicts the tem-
perature θðx, ηÞ, with different effecting variables γ = 0:05
and α = 0:3. The Prandtl number is the quotient of two
forces. Those are the viscous and thermal forces. Rising Pr
increases viscosity and decays the thermal action of fluids.
Fluids cannot move freely if viscosity increases. Figure 7(a)
shows that as the Prandtl number increases, the velocity of
the fluid decreases rapidly along with the downward direc-
tion of the plate against η.

It is found that when Pr increases, velocity decreases by
64% because the biggest velocity is 0.55738 for Pr = 0:73
and 0.19935 for Pr = 15:5. It is clear from Figure 7(b) that
as Pr increases, the Prandtl number temperature decreases.
Generally, for increasing the Prandtl number (Pr), both
momentum, that is, streamline and the boundary layer,
that is, isotherm, become thinner. With other controlling
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Figure 5: Effect of isotherms for (a) γ = 0:0, (b) γ = 0:1, (c) γ = 0:2, and (d) γ = 0:3 while Pr = 1:0 and α = 0:3.
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parameters γ = 0:05 and α = 0:3, the transformation of the
variety of Prandtl numbers over the forms of the stream-
lines and the isotherms is shown in Figures 8 and 9. It
can be observed that for Pr = 0:73, 1.73, 3.00, and 7.00,
the highest ψ, that is, ψmax, are 9.17, 6.73, 5.35, and 4.11,
respectively. So, it can be included that for the lower
Prandtl number with the effects of thermal conductivity,
that is, temperature dependent and additionally
amplitude-to-length ratio, the boundary layer and momen-
tum are set off thinner.

The study of free convective heat transfer from an irregu-
lar surface has drawn the attention of scientists and engineers
because natural convective heat transfer is important in many
natural and industrial problems, and transferring heat from an
irregular surface is used in many heat transferring devices. It is
possible to conclude from the results that the work has a sig-
nificant impact, so it will be very noble, going above and
beyond previous efforts, that this thesis will be useful for engi-
neers in geophysics and energy-related engineering, industrial
applications, heat transfer devices, and so on.
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6. Conclusion

The concept of natural convective heat transport of
incompressible viscous fluids with a reciprocal variety of
the thermal conductivity, which is temperature dependent
along a surface, that is, wavy and vertical, has been stud-
ied. This work explored the impact of a range of thermal
conductivities that are temperature dependent and con-
versely proportional with a linear function of temperature
on free convective flow over a heated evenly and wavy
vertical surface where the fluids are viscous and incom-
pressible. The governing equations with adequate bound-
ary conditions are converted into nondimensional form
and analyzed using the implicit central finite difference
methodology with Newton’s quasilinearization method
and the block Thomas algorithm, also known as the
Keller-box method. The results in terms of heat transfer
rate, skin frictional coefficient, isotherms, and streamlines
are graphically displayed for the effects of various physical
parameters. The following are short outlines of the impor-
tant outcomes:

(i) It is found that the heat transferring rate is local, the
frictional coefficient of the skin is local, and the tem-
perature and the velocity are decreasing with the ris-
ing values of the reciprocal variation of thermal
conductivity, which is temperature dependent

(ii) It is remarked that heat transfer rate and skin fric-
tion coefficient decrease approximately 6% and 4%
when γ differs from 0.0 to 0.3, respectively

(iii) Both the thermal boundary layer and the velocity
boundary layer become narrower when the effect
of thermal conductivity, which is temperature
dependent, is considered

(iv) It is found that velocity decays approximately by 6%
as γ changes 0.0 to 0.3

(v) The friction coefficient of skin, the velocity, and the
temperature decrease, but the heat transfer rate
increases as Prandtl’s number increases. Here, the
friction coefficient of skin and velocity decrease by
43% and 64%, respectively, while the heat transfer
rate rises by approximately 61%.

(vi) With the effects of the Prandtl number, both the
boundary layer thermal and velocity become
thinner

Data Availability

All the data are available in manuscripts.
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