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Abstract

In this paper, we propose a three-parameter probability distribution called equilibrium renewal
Burr XII distribution using the equilibrium renewal process. The statistical properties of the
distribution such as moment, mean deviation, order statistics, moment generating function,
Beforroni and Lorenz curve, survival function, reversed hazard rate and hazard function were
derived. The method of maximum likelihood is used for estimating the distribution’s parameters
and a simulation study is conducted to assess the performance of the parameters. We provide
two applications in field of health to demonstrate the importance of the proposed distribution.
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1 Introduction

The Burr XII distribution is one of the most important distribution amongst the Burr system of
distributions proposed by Irving W. Burr in 1942. Due to its versatility and flexibility, applications
of the Burr XII in modelling real world data can be found in many fields such as health, insurance,
engineering and finance. Recently, numerous methods have been suggested in developing continuous
statistical distributions. Some of these methods which includes the transformation method [1],
method of adding additional parameter to existing distribution [2], beta generated method [3],
tranformed-transformer method [4] and composite methods have either been used to generalise,
extend or modify the Burr XII distribution in order to increase its flexibility for modelling data sets
in different fields [5]. For instance, the beta Burr XII distribution introduced by [6], the McDonald
Burr XII distribution introduced by [7], the Poisson Burr XII distribution established by [8], the
Marshall-Olkin extended Burr XII distribution developed by [9], the Weibull Burr XII distribution
introduced by [10] and the transmuted Burr XII distribution developed by [10] are some univariate
extensions of the Burr XII distribution.

An alternative approach in proposing distributions is through the the concept of reliability. [11]
used the hazard rate function in defining density functions. The density functions introduced by
[11] are defined by,

g(y) = h(y) · e−
∫ y
0 h(x)dx y ≥ 0,

where h(y) ≥ 0 is the hazard rate function. In addition, [12] in the context of durability tool-testing
proposed the Pseudo-Weibull distribution by considering the definition,

g(y) =
y

E(y)
f(y),

where E(y) =
∫∞
0

yf(y)dy and f(y) is the probability density function (PDF). In addition to
distributions proposed in the concept of reliability, a less exploited alternative in proposing probability
density functions through the concept of renewal equilibrium process given by,

Ep(y) =
1− F (y)

µ
, (1.1)

where F (y) is the underlining Cumulative Distribution Function (CDF) and µ is the mean failure
rate of the underling cumulative distribution [13]. [14] modified several density functions such as
the Weibull, Gamma, generalised exponential and power distribution by employing the equilibrium
renewal process. The method of equilibrium renewal process is easily applicable and often gives
explicit forms for the modified PDFs. There are, however, cases where the method does not give
explicit form of CDFs which is highlighted by [14].

Although the Burr XII distribution exhibits numerous advantages, one most important limitation of
the Burr XII distribution is that it lacks flexibility on the hazard function. Based on the limitation
of the Burr XII distribution, we propose a new three-parameter modification Burr XII distribution
using the equillibrium renewal process and call it the equilibrium renewal Burr XII distribution
(ER-BurrXII). As shown in this study, this new modication gives various kinds of shapes of the
PDF and hazard function, particularly increasing, decreasing, upside down bathtubs, unimodal and
constant hazard function shapes, which are not always reached for the Burr XII distribution.

The article is organised as follows: Section 2 introduces the PDF and the corresponding CDF of
the ER-BurrXII distribution. Section 3 presents several mathematical properties. The maximum
likelihood estimation of the ER-BurrXII parameters is addressed in Section 4. In Sections 5,
simulation results to assess the performance of maximum likelihood estimators of the proposed
distribution are discussed. We provide two applications to real data sets to illustrate the importance
of the new model in Section 6. Finally, in Section 7, the conclusions of the study is presented.
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2 Equilibrium Renewal Burr XII Distribution

Let the random variable Y follow the equilibrium renewal Burr XII (ER-BurrXII) distribution with
positive parameters a > 0, c > 0 and k > 0. Let y ∈ R+, supposed the CDF and mean of the Burr
XII distribution are respectively given by,

G(y) = 1−
(
1 +

(y
a

)c)−k

, (2.1)

and

µ = kaB

(
1

c
+ 1, k − 1

c

)
, (2.2)

where a, c, k > 0 [15] and B(α, β) is the beta function defined by

B(α, β) =

∫ t

0

tα−1(1− t)β−1dt.

The PDF of the random variable Y is obtained by substituting equation (2.1) and (2.2) into equation
(1.1). Hence, the PDF of the ER-BurrXII distribution is given by

g(y) =

(
1 +

(
y
a

)c)−k

kaB
(
1
c
+ 1, k − 1

c

) , (2.3)

where c > 0 and k > 0 are the shape parameters and a > 0 is a scale parameter. The density plots
of the ER-BurrXII distribution for varied parameter values are displayed in Fig. 1. It is observed
that the PDF of the ER-BurrXII distribution can be right skewed or constant depending on the
shape parameter c and k. The density plots also exhibits a reversed ”J” and ”S” shapes as displayed
in Fig. 1.

Fig. 1. PDF plots of the ER-BurrXII distribution

The CDF of the ER-BurrXII is obtained by integrating equation (2.3) with respect to y. Hence,
the CDF is given by

G(y) =
y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) , (2.4)

20



Anafo et al.; AJPAS, 15(2): 18-40, 2021; Article no.AJPAS.75377

where a, c, k > 0 and 2F1(a, b, c; z) is the Gauss hypergeometric function defined by,

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt.

The survival function, hazard function and reversed hazard rate (RHR) of the ER-BurrXII distribution
are given by Equations (2.5), (2.6) and (2.7) respectively;

S(y) = 1−
y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) , y > 0, (2.5)

h(y) =

(
1 +

(
y
a

)c)−k

kaB
[
1
c
+ 1, k − 1

c

]
− y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c) , y > 0, (2.6)

RHR(y) =

(
1 +

(
y
a

)c)−k

y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c) . (2.7)

Fig. 2 displays the hazard function plots of the ER-BurrXII distribution for different parameter
values. It can be observed that the hazard function of the ER-BurrXII exhibits a decreasing,
increasing and upside down bathtub shapes.

Fig. 2. The hazard functions plots of the ER-BurrXII distribution

3 Statistical Properties

In this section we present statistical properties of the ER-BurrXII distribution such as the quantile
function, moments, moment generating function, incomplete moment, entropy, order statistic, mean
deviations and Beforroni and Lorenze curve.

3.1 Quantile function

The quantile function is the inverse of the distribution function. Through the quantile function,
measures such as the mean, quartiles, skewness and kurtosis can be derived.
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The quantile function of the ER-BurrXII distribution is obtained by letting

p =
y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) ,

and solving for y, where p ∈ (0, 1). The quantile function of the ER-BurrXII distribution does not
have a closed form. Hence, numerical techniques will be used to solve for the quantile function.

Table 1 displays the quantile values of the ER-BurrXII distribution for some values p ∈ (0, 1) and
choice parameter a, c and k. From Table 1 we observe that as p increases towards one for various
parameter values, the quantile also increases. The lower quartile [Q(0.25)], median [Q(0.5)] and
upper quartile [Q(0.75)] also increases as parameter values increases. In general, we observe from
Table 1 that as parameter values increase the quantile values generally increases in value.

Table 1. Some values of the quantile of the ER-BurrXII-Standard Uniform
distribution for some values

Q(u) a = 10, c = 2.4, k = 50 a = 5, c = 6, k = 40.9 a = 7.8, c = 5.1, k = 50.9

0.1 0.1865 0.2505 0.3326
0.25 0.4654 0.6262 0.8313
0.35 0.6433 0.8766 1.1634
0.45 0.8168 1.1264 1.4938
0.5 0.9005 1.2507 1.6576
0.65 1.1372 1.6173 2.1369
0.75 1.2817 1.8502 2.4381
0.85 1.4151 2.0657 2.7153
0.9 1.4776 2.1646 2.9624

3.2 Moments

In this section, the rth moment of the ER-BurrXII distribution is derived. The rth can be used in
computing various properties of a data such as the mean, standard deviation, skewness and kurtosis.

Proposition 3.1. The rth moment of the ER-BurrXII distributed random variable Y is given as

µ
′
r =

ar+1Γ( r+1
c

)Γ(k − r−1
c

)

ckaB
(
1
c
+ 1, k − 1

c

)
Γ(k)

, r = 1, 2, . . . ,

where c > k, c > r − 1 and Γ(β) =
∞∫
0

tβ−1e−tdt is the gamma function.

Proof. By definition,the rth non-central moment is given by

µ
′
r =

∞∫
0

yrg(y)dy

=
1

kaB
(
1
c
+ 1, k − 1

c

) ∞∫
0

yr
(
1 +

(y
a

)c)−k

dy.
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Let u =
(
1 +

(
y
a

)c)−1
. As y → 0, u → 1 and as y → ∞, u → 0. Also, y = a

(
1− u

u

)1/b

and

dy = − ac

cyc−1u2
du. Thus,

µ
′
r =

1

kaB
(
1
c
+ 1, k − 1

c

) ar+1

c

1∫
0

(1− u)
r+1
c

−1uk− r−1
c

−1du

=
1

kaB
(
1
c
+ 1, k − 1

c

) ar+1

c
B

(
r + 1

c
, k − r − 1

c

)
,

where B(u, v) =
∫ t

0
tu−1(1 − t)v−1dt is the beta function. Employing the beta function defined by

the gamma function, we define

B(u, v) =

∫ t

0

tu−1(1− t)v−1dt =
Γ(u)Γ(v)

Γ(u+ v)
,

where u > 0 and v > 0 [16]. Hence, the rth non-central moment of the ER-BurrXII is given by

µ
′
r =

ar+1Γ( r+1
c

)Γ(k − r−1
c

)

ckaB
(
1
c
+ 1, k − 1

c

)
Γ(k)

.

This completes the proof.

The rth raw moment of the ER-BurrXII distribution are used to obtain the mean, median, variance,
skewness and kurtosis for various parameter values of the ER-BurrXII distribution in Table 2.

Table 2 indicates that, for fixed a and increasing values of c, both the variance and mean are
increasing functions of k. The skewness and kurtosis exhibits an intermittent behaviour as the
parameter values increases for a fixed parameter a. Table 2 shows that the ER-BurrXII distribution
is positively skewed. In addition, the proposed distribution exhibits both high and low kurtosis
values.

3.3 Incomplete moments

Proposition 3.2. The rth incomplete moment of the ER-BurrXII distribution is given by,

mr =
B∗([1 + ( y

a
)c]−1; r+1

c
, k − r−1

c

)
ckB

(
1
c
+ 1, k − 1

c

) , r = 1, 2 . . . , (3.1)

where c > k, c > r− 1 and B∗(y;u, v) is the upper incomplete beta function and B(u, v) is the beta
function.

Proof. Using the definition of the rth incomplete moment of a random variable,

mr(y) =

y∫
0

xrg(x)dx. (3.2)

Substituting the PDF of the ER-BurrXII, into the definition of the incomplete moments of the
ER-BurrXII gives us,

mr(y) =
1

kaB
(
1
c
+ 1, k − 1

c

) y∫
0

xr
(
1 +

(x
a

)c)−k

dx. (3.3)
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Table 2. Mean, variance, skewness and kurtosis of the ER-BurrXII distribution for
a = 5 and various parameter values of c and k

Parameters Moments

a c k Mean Variance Skewness Kurtosis

5 10 0.5 0.3254 0.3254 0.5000 100.0000
1.2 0.6087 0.4239 0.3424 0.3050
1.5 0.7321 0.4881 0.3750 0.3150
2.5 1.1331 0.6973 0.4911 0.3750
3.0 1.3281 0.7974 0.5472 0.4066

5 12 0.5 0.3047 0.2686 0.3047 0.5000
1.2 0.6036 0.4130 0.3246 0.2886
1.5 0.7314 0.4836 0.3657 0.3000
2.5 1.1473 0.7111 0.5019 0.3824
3.0 1.3504 0.8203 0.5670 0.4226

5 20 0.5 0.2753 0.2067 0.1792 0.1715
1.2 0.5978 0.4000 0.3032 0.2470
1.5 0.7343 0.4822 0.3584 0.2859
2.5 0.9592 0.6166 0.4482 0.3493
3.0 1.4019 0.8775 0.6206 0.4702

Let u =
(
1 +

(
x
a

)c)−1
. As x → y, u → (1 + ( y

a
)c)−1 and as y → ∞, u → 1. Also, y = a

(
1− u

u

)1/b

and dy = − ac

cyc−1u2
du. Thus,

mr(y) =
1

kaB
(
1
c
+ 1, k − 1

c

) ar+1

c

1∫
(1+( y

a
)c)−1

(1− u)
r+1
c

−1uk− r−1
c

−1du

=
1

kaB
(
1
c
+ 1, k − 1

c

) ar+1

c
B∗

([
1 +

(y
a

)c]−1

;
r + 1

c
, k − r − 1

c

)
,

where B∗(a, b; y) is defined by

B∗(u, v; y) =

∫ 1

y

tu−1(1− t)v−1dt

We may call B∗(u, v; y) defined by ([17] as cited by [18]) as the upper incomplete beta function.

3.4 Moment generating function

The moment generating function (MGF) if it exist is a special function used to find the moments
and functions of moments such as mean and variance of a random variable in a simpler way and
also help in identifying which PDF a random variable follows.

Proposition 3.3. Given a random number Y having the ER-BurrXII distribution, then the MGF
for the ER-BurrXII distribution is given by

MY (t) =

∞∑
r=0

trar+1Γ( r+1
c

)Γ(k − r−1
c

)

r!ckaB
(
1
c
+ 1, k − 1

c

)
Γ(k)

, r = 1, 2, . . . , (3.4)
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Γ(β) =
∞∫
0

tβ−1e−tdt is the gamma function.

Proof. Suppose Y is a random variable having the ER-BurrXII PDF in equation (2.3). We obtain
the moment generating function by using the following formula

M(t) = E
[
etY

]
=

∫ ∞

0

etyg(y)dy. (3.5)

Applying Taylors series expansion and substituting the rth moment in Proposition (3.2) yields

MY (t) =

∞∑
r=0

trar+1Γ( r+1
c

)Γ(k − r−1
c

)

r!ckaB
(
1
c
+ 1, k − 1

c

)
Γ(k)

, r = 1, 2, . . . ,

3.5 Mean deviations

Proposition 3.4. The mean deviation of a random variable Y having the ER-BurrXII from its
mean is

D(y) = 2µG(µ)− 2ckaB∗
(
k∗;

r + 1

c
, k − r − 1

c

)[
B

(
1

c
+ 1, k − 1

c

)]−1

, (3.6)

where k∗ =
(
1 +

(
µ
a

)c)−1
and µ = µ

′
1 is the mean of Y .

Proof. The mean deviation about the mean is defined as

D(y) =

∫ ∞

0

|y − µ|g(y)dy. (3.7)

Then the mean deviation measure of the ER-BurrXII can be calculated using the relationship,

D1(y) =

∫ µ

0

(µ− y)g(y)dy +

∫ ∞

µ

(y − µ)g(y)dy

= 2µG(µ)− 2

∫ µ

0

yg(y)dy.

Let Y ∼ ER-BurrXII(a, c, k). Then,

D(y) = 2µG(µ)− 2ckaB∗
(
k∗;

r + 1

c
, k − r − 1

c

)[
B

(
1

c
+ 1, k − 1

c

)]−1

,

where
∫ µ

0
ydy is simplified using the first incomplete moment.

Proposition 3.5. The mean deviation of a random variable Y having the ER-BurrXII from its
median is

D2(y) = µ− 2ckaB∗
(
k∗∗;

r + 1

c
, k − r − 1

c

)[
B

(
1

c
+ 1, k − 1

c

)]−1

,

where k∗∗ =
(
1 +

(
M
a

)c)−1
and M is the median of Y .

Proof. The mean deviation about the mean is defined as

D2(y) =

∫ ∞

0

|y −M |g(y)dy.
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Then the mean deviation measure of the ER-BurrXII can be calculated using the relationship,

D2(y) =

∫ M

0

(M − y)g(y)dy +

∫ ∞

M

(y −M)g(y)dy

= µ− 2

∫ M

0

yg(y)dy.

Let Y ∼ ER-BurrXII(a, c, k). Then,

D2(y) = µ− 2ckaB

(
k∗∗;

r + 1

c
, k − r − 1

c

)[
B

(
1

c
+ 1, k − 1

c

)]−1

,

where
∫M

0
ydy is simplified using the first incomplete moment.

3.6 Beforroni and Lorenz curve

Lorenz and Bonferroni curves are income inequality measures that are widely useful and applicable
to some other areas including reliability, demography, medicine and insurance. In this section, we
have derived the Lorenz and Bonferroni curves for the ER-BurrXII distribution.

Proposition 3.6. The Lorenz curve for a random variable having the ER-Burr XII distribution is,

LF (y) =
B∗ ((1 + ( y

a
)c)−1; r+1

c
, k − r−1

c

)
ckµB

(
1
c
+ 1, k − 1

c

) , (3.8)

where B(u, v; y) is the upper incomplete beta function and B(u, v) is the beta function.

Proof. The Lorenz curve of the distribution of a random variable is defined as

LG(y) =
1

µ

y∫
0

xg(x)dx.

From the definition, the Lorenz curve is simply the product of the first incomplete moment and the
reciprocal of the mean of the random variable. Hence,

LG(y) =
B∗ ((1 + ( y

a
)c)−1; r+1

c
, k − r−1

c

)
ckµB

(
1
c
+ 1, k − 1

c

) .

The proof is therefore complete.

Proposition 3.7. The Bonferroni curve of a random variable having the ER-BurrXII distribution
is

BG(y) =
B∗ ((1 + ( y

a
)c)−1; r+1

c
, k − r−1

c

)
ckµG(y)B

(
1
c
+ 1, k − 1

c

) ,

where B(u, v; y) is the upper incomplete beta function.

Proof. The Bonferroni curve by definition is given as

BG(y) =
LG(y)

G(y)
.

Thus, substituting the Lorenz curve into the definition of the Bonferroni curve and CDF of the
ER-BurrXII distribution completes the proof.
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3.7 Order statistics

The subject of order statistics deals with the features and applications of ordered random variables
and of functions involving them. Let Y(1), Y(2), . . . , Y (n) denote the order statistics of a random
sample Y1, Y2, . . . , Yn from a continuous population with CDF GY (y) and PDF gY (y), then the
PDF of the pth order statistics Yp is given by,

gp:n = Ur:n [G(y)]p−1 [1−G(y)]n−p g(y),

for r = 1, 2, . . . , n, where Ur:n =
n!

(p− 1)! (n− p)!
= [B(p, n− p+ 1)]−1 is the beta function.

The PDF of the pth order ER-BurrXII random variable Y(p) is given by

gp:n(y) =Ur:n

[
y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) ]p−1 [
1−

y2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) ]n−p

×
(
1 +

(
y
a

)c)−k

kaB
(
1
c
+ 1, k − 1

c

) .
Therefore, the PDF of the largest order of the ER-BurrXII statistic Yn:p is given by,

gn:p(y) = n

[
2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) ]n−1 (
1 +

(
y
a

)c)−k

kaB
(
1
c
+ 1, k − 1

c

)
and the PDF of the first order statistic of the ER-BurrXII Y1:p is given by,

g1:p(y) = n

[
1− 2F1

(
1
c
, k, 1 + 1

c
;−

(
y
a

)c)
kaB

(
1
c
+ 1, k − 1

c

) ]n−1 [
1 +

(y
a

)c]−k
[
kaB

(
1

c
+ 1, k − 1

c

)]−1

.

3.8 Entropy

The entropy of a random variable describes the measure of variation of the uncertainty. A large
value of entropy, indicates a greater uncertainty in the data.

Proposition 3.8. Given a random variable Y having the ER-BurrXII distribution, then the Rényi
entropy of the ER-BurrXII distribution is given by,

IR(δ) = (1− δ)−1 log

{
aB

(
kδ − 1

c
, 1
c

)
c
[
ckaB

(
1
c
+ 1, k − 1

c

)]δ
}
, (3.9)

where δ > 0 and δ ̸= 0.

Proof. By definition,

IR(δ) = (1− δ)−1 log

{∫ ∞

0

g(y)δdy

}
, (3.10)

where δ > 0 and δ ̸= 0. Substituting the density of the ER-BurrXII distribution into equation
(3.10), we obtain

IR(δ) = (1− δ)−1 log


∫ ∞

0

[ (
1 +

(
y
a

)c)−k

ckaB
(
1
c
+ 1, k − 1

c

)]δ

dy

 .

Let

v(y) =

∫ ∞

0

[ (
1 +

(
y
a

)c)−k

ckaB
(
1
c
+ 1, k − 1

c

)]δ

dy.
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We simplify v(y) as follows,

v(y) =
1[

ckaB
(
1
c
+ 1, k − 1

c

)]δ ∫ ∞

0

(
1 +

(y
a

)c)−kδ

dy.

Let u =
(
1 +

(
y
a

)c)−1
. As y → 0, u → 1 and as y → ∞, u → 0. Also, y = a

(
1− u

u

)1/b

and

dy = − ac

cyc−1u2
du. Thus,

v(y) =
1[

ckaB
(
1
c
+ 1, k − 1

c

)]δ a

c

1∫
0

(1− u)
1
c
−1ukδ− 1

c
−1du

=
1[

ckaB
(
1
c
+ 1, k − 1

c

)]δ [
a

c
B

(
kδ − 1

c
,
1

c

)]
.

Hence ,

IR(δ) = (1− δ)−1 log

{
aB

(
kδ − 1

c
, 1
c

)
c
[
ckaB

(
1
c
+ 1, k − 1

c

)]δ
}
.

The proof is therefore complete.

Table 3 displays the Rnyi entropy values for various value of a, c and k. It can be observed that
for various increasing parameter values, the values of the Rnyi entropy is decreases. Also, as the
values of a and c increases with a constant k, the entropy values tends to negative. This indicates
the flexibility of the amount of randomness of the ER-BurrXII distribution.

Table 3. Numerical values of the Rnyi entropy of the ER-BurrXII distribution at
different values of a, c, and k

Parameter Entropy

a c k 0.1 1.2 2.0 3.0

1.0 20.5 2.1 0.5325 -6.4122 -2.1530 -1.6134
1.2 20.5 2.2 0.8098 -8.1351 -2.5550 -1.8681
1.4 20.5 2.4 1.0322 -10.0095 -3.0371 -2.1759
2.0 20.5 2.5 1.5936 -12.9399 -3.6733 -2.5253
2.1 20.5 2.6 1.6626 -13.6354 -3.8607 -2.6490

2.2 10.1 3.0 2.0611 -15.2429 -4.3943 -3.0585
2.5 10.7 3.0 2.2225 -16.1633 -4.5747 -3.1452
3.0 10.8 3.0 2.5081 -17.4782 -4.8371 -3.2759
3.1 10.9 3.0 2.5541 -17.7144 -4.8837 -3.2987
3.2 20.2 3.0 2.6050 -17.9435 -4.9295 -3.3216

0.4 30.1 4.1 -1.1231 -5.6427 -2.8006 -2.4517
0.4 30.4 4.2 -1.1242 -5.8523 -2.8710 -2.5046
0.4 30.5 4.3 -1.1244 -6.0573 -2.9400 -2.5567
0.4 30.6 4.5 -1.1241 -6.4533 -3.0736 -2.6574
0.4 30.7 4.6 -1.1241 -6.6447 -3.1381 -2.7059
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4 Estimation of Parameters of ER-BurrXII Distribution

In this section, we derive the estimation of the parameter of the ER-BurrXII distribution using the
method of maximum likelihood estimation.

4.1 Maximum likelihood estimation

Let Y1, Y2, Y3, . . . , Yn be random sample of sample size n from the ER-BurrXII distribution, then
the likelihood function of the ER-BurrXII distribution is given by,

L(y; a, c, k) =

n∏
i=1

(
1 +

(
y
a

)c)−k

kaB
(
1
c
+ 1, k − 1

c

)
=

1(
kaB

(
1
c
+ 1, k − 1

c

))n n∏
i=1

(
1 +

(yi
a

)c)−k

.

Using the fact that,

B(a, b) =

∫ t

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
,

the likelihood function function of the ER-BurrXII can be rewritten as,

L(y; a, c, k) =
(Γ(1 + k))n(

kaΓ
(
1
c
+ 1

)
Γ
(
k − 1

c

))n n∏
i=1

(
1 +

(yi
a

)c)−k

.

The log likelihood function is

ln (L(x; a, c, k)) =n

(
ln Γ(1 + k)− ln Γ

(
1

c
+ 1

)
− ln Γ

(
k − 1

c

))
− n ln k − n ln a

−k

n∑
i=0

ln
(
1 +

(yi
a

)c)
.

(4.1)

The maximum likelihood estimators of a, c and k are obtained by maximization of the log likelihood
function defined by

∂ lnL(y; a, c, k)

∂a
= −n

a
−

n∑
i=0

kc
(
yi
a

)c
a
(
1 +

(yi
a

)c) = 0 (4.2)

∂ lnL(y; a, c, k)

∂c
= −n

{
Ψ

(
1

c
+ 1

)
+Ψ

(
k − 1

c

)}
−

n∑
i=0

k
(
yi
a

)c
ln

(
yi
a

)
a
(yi
a

)c

+ 1
= 0 (4.3)

∂ lnL(y; a, c, k)

∂k
= −n

k
+ n

{
Ψ(1 + k) + Ψ

(
k − 1

c

)}
− k

n∑
i=0

ln
(
1 +

(yi
a

)c)
= 0 (4.4)

where Ψ(z) =
d

dz
ln(Γ(z)) is the digamma function. Equations (4.2), (4.3) and (4.4) does not have

explicit solutions, hence numerical approximation will be employed in computing the estimates of
parameters a, c and k respectively. Although these equations (4.2), (4.3) and (4.4) cannot be solved
analytically, a numerical solution can be determined by using R computing packages. Iterative
techniques such as Broyden-Fletcher-Goldfarb-Shannon type algorithms can be adopted to obtain
the estimates. We employed the mle2 procedure in R programming language.
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5 Simulation Study

In this section, the main goal of the simulation is to assess the performance of the maximum
likelihood estimators for the parameters of the ER-BurrXII distribution. The experiment was
performed with two set of parameter values (a, b, k) = (20.9, 1.5, 500) and (40, 10, 100). The
simulation steps are;

i. Specify the value of the parameters a, c, k and sample size n.

ii. Generate random observations of size n = 10, 30, 60, 100, 150, 200, 300, 500 from the ER-
BurrXII distribution using the quantile function.

iii. Compute MLE of parameters a, c and k according to section (4.1).

iv Replicate steps ii− iii for N = 5, 000 times.

v. To examine the performance of the estimates, we calculated the averages bias (AB) and root
mean square error (RMSE) using the formulas,

AB =
1

N

N∑
i=0

(
θ̂i − θ

)
RMSE =

√√√√ 1

N

N∑
i=1

(
θ̂i − θ

)2

,

for θ = a, c, k.

The ABs of the maximum likelihood estimators of parameter values (a, c, k) = (20.9, 1.5, 500) are
displayed in Fig. 3. The ABs for parameter a and c are generally positive, except for parameter k
which exhibits an initial AB values of negative. Although parameter c and k appear intermittent
in nature, the AB for each parameter decrease to zero as n increases. The ABs appear largest and
smallest for the parameter a and k respectively. The RMSEs of the maximum likelihood estimators
of parameter values (a, c, k) = (20.9, 1.5, 500) are displayed in Fig. 4. Although the RMSEs appear
volatile, the RMSE for each parameter decrease to zero as n becomes larger. The RMSEs appear
largest for parameters a and k except for parameter c which displays lesser RMSEs.

Fig. 5 displays the ABs of the maximum likelihood estimators of parameter values (a, c, k) =
(40, 10, 100). The ABs for parameter a and k are generally positive, except for parameter c which
exhibits initial ABs values of negative. We observe that, the ABs of parameter a decreases faster
compared to parameter c and k. Although parameter c appears intermittent in nature, the AB
decrease to zero as n increases. The ABs appear largest for the parameter a. The RMSEs of the
maximum likelihood estimators of parameter values (a, c, k) = (40, 10, 100) are displayed in Fig. 6.
Although, the RMSE for parameters c and k appear sporadic in nature, we observe that the RMSE
for all parameters decreases as n becomes larger. We also observe that the RMSE for parameter a
decreases.

6 Applications

To illustrate the importance and potentiality of the proposed ER-BurrXII distribution, the remission
and survival times of patients data is applied and compared with some other existing distributions
namely, the Generalised Pareto [19], Cauchy [20], Exponential Pareto [21], Weibull Fréchet [22],
Exponentiated Inverse Rayleigh [23], Weibull (2P) [24], Generalized Rayleigh [25], Burr XII (2P)
[26] and Topp-Leon Burr XII (TP Leon Burr XII) [27] using goodness-of-fit statistics such as
the Log Likelihood(L), Akaike information criterion(AIC), Consistent Akaike information criterion
(CAIC), Bayesian information criterion (BIC) and HannanQuinn information criterion (HQIC).
The R programming language through the mle2 package is used to derive the estimates of the
models.
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Fig. 3. AB for Estimators of the ER-BurrXII distribution

Fig. 4. RMSE for Estimators of the ER-BurrXII distribution
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Fig. 5. AB for Estimators of the ER-BurrXII distribution

Fig. 6. RMSE for Estimators of the ER-BurrXII distribution

6.1 Remission times bladder cancer data

The first data set represents the remission times (in months) of a random sample of 128 bladder
cancer patients reported in [28]. The data were previously studied by [29], [30],and [31]. Table 4
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displays some descriptive statistics of the bladder cancer patients data. The average survival time is
approximately 10 months, the minimum and maximum survival times were approximately 1 month
and 39 months respectively. We observe that the data is right skewed with coefficient of skewness
of 1.4728. The distribution of the dataset has coefficient of variation of 0.7327 which indicates that
the distribution has a high level of dispersion around the mean. Table 5 lists the MLEs, standard
error and Z-Statistics for the fitted distributions.

Table 6 presents the log-likelihood and information criteria for the bladder cancer patients data.
We observe that out of the nine models, the ER-BurrXII has the highest value of the L and lowest
value of the AIC, CAIC, BIC and HQIC. Thus, we conclude that the ER-BurrXII distribution is
quite flexible in the modeling of the proposed data.
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In Fig. 7, we show the estimated PDFs and estimated CDFs of all fitted distributions using the
estimators obtained in Table 5. From Fig. 7, it is noticed that the ER-BurrXII distribution fits the
remission times of the gall bladder cancer patients data better than the other nine models.

6.2 Acute myelogenous leukaemia data

The dataset gives the survival times, in weeks, of 33 patients suffering from acute myelogenous
leukaemia. These data have been introduced by [32] and analysed by [33] and [34]. Table 7 displays
some descriptive statistics of survival times of patients suffering from acute myelogenous leukaemia.
The mean survival time is 40.8788 weeks, the minimum and maximum survival times were 1.0000
and 156.0000 weeks respectively. We observe that the survival times are right skewed with coefficient
of skewness of 1.1646. The distribution of the dataset has coefficient of variation of 1.1425 which
indicates that the distribution has a high level of dispersion around the mean.

Table 7. Descriptive statistics of patients suffering from acute myelogenous
leukaemia.

Table 8 presents the parameter estimates and the corresponding standard errors and Z-statistic.

Table 9 brings the proposed model as well as the following statistics: AIC, BIC, CAIC, HQIC and
log-likelihood to check how the distribution fits the data. The smaller the values of the AIC, BIC,
CAIC and HQIC together with the highest value of log likelihood the better the model fit. We
can observe, in Table 9, that the results involving the Exponentiated Pareto, Cauchy, Generalised
Pareto, Weibull Fréchet, Exponentiated Inverse Rayleigh, Weibull (2P), General Rayleigh, Burr
XII (2P) and Topp-Leon Burr XII produces high values for the AIC, CAIC, BIC and HQIC for the
ER-BurrXII model. Also, the ER-BurrXII model has the highest log likelihood value compared to
the other models.

34



Anafo et al.; AJPAS, 15(2): 18-40, 2021; Article no.AJPAS.75377

Table 8. MLEs of parameters, standard errors and Z-statistics for acute myelogenous
leukaemia data

Thus, we can say that the ER-BurrXII distribution can be applied to explain the survival times of
patients.

We can observe from Fig. 8 the ER-BurrXII is an excellent fit to the data distribution in relation
to the adequacy of the data.
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Fig. 7. The estimated PDFs (top panel) and the estimated CDFs (bottom
panel) remission times of the gall bladder cancer patients data.
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Fig. 8. The estimated PDFs (top panel) and the estimated CDFs (bottom panel) for
acute myelogenous leukaemia data
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Table 9. Comparison criterion for acute myelogenous leukaemia data

7 Conclusion

The three-parameter equilibrium renewal Burr XII distribution called the ER-BurrXII distribution
is introduced and studied in detail. Its hazard rate function exhibits increasing, decreasing and
upside-down bathtub shapes. Some mathematical properties of the proposed model are presented,
including the ordinary and incomplete moments and generating functions, mean deviations, Beforroni
and Lorenz curve, and order statistics. We estimate the model parameters using the maximum
likelihood estimation approach. We illustrate the importance of the proposed distribution for
modeling data and also prove that the ER-BurrXII distribution is quite competitive to other known
Burr XII (2P), Generalized Pareto, Cauchy, Exponentiated Pareto, Weibull Fréchet, Exponential
Inverse Rayleigh, Generalised Rayleigh, TP Leon Burr XII and Weibull (2P) distributions.
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