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This paper investigates the combined damped sinusoidal oscillation solutions to the (3 +1)-D variable-coefficient (VC)
generalized nonlinear wave equation. The bilinear form is considered in terms of Hirota derivatives. Accordingly, we utilize a
binary Bell polynomial transformation for reducing the Cole-Hopf algorithm to get the exact solutions of the VC generalized
NLW equation. The damped sinusoidal oscillations for two cases of the nonlinear wave ordinary differential equation will be
studied. Using suitable mathematical assumptions, the novel kinds of solitary, periodic, and singular soliton solutions are
derived and established in view of the trigonometric and rational functions of the governing equation. To achieve this, the
illustrative example of the VC generalized nonlinear wave equation is provided to demonstrate the feasibility and reliability of
the procedure used in this study. The trajectory solutions of the traveling waves are shown explicitly and graphically. The effect
of the free parameters on the behavior of acquired figures of a few obtained solutions for two nonlinear rational exact cases
was also discussed. By comparing the proposed method with the other existing methods, the results show that the execution of
this method is concise, simple, and straightforward.

1. Introduction

The advent of the concept of nonlinear partial differential
equations (NLPDEs) has attracted the interest of many
researchers due to their importance in accurately demonstrat-
ing the dynamics of abundant real-world systems in various
fields of sciences such as physics, diffusion, biology, chaos the-
ory, chemistry, engineering, economics, and commerce [1-3].

In particular, more and much attention has been paid to
constructing exact and approximate solutions, for example, a

multiobjective optimization structure method [4], the differ-
ential transform method [5], an improved differential trans-
form method [6], a new solitary periodic wave solution [7],
the multiple Exp-function method [8], an expectation max-
imization algorithm [9], a multiobjective mixed integer
linear programming model [10], Hirota’s bilinear method
[11], a mean-semivariance approach [12], a genetic algo-
rithm for preemptive scheduling of a single machine [13],
solving absolute value problems [14], the inverse scattering
transformation method [15], the multiple soliton solutions


https://orcid.org/0000-0002-6020-3032
https://orcid.org/0000-0001-7201-6667
https://orcid.org/0000-0001-6085-943X
https://orcid.org/0000-0001-7988-3093
https://orcid.org/0000-0001-9113-0633
https://orcid.org/0000-0002-2194-986X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8144911

and fusion interaction phenomena [16], the truncated Pain-
levé series [17], a software product line engineering approach
[18], a conceptual framework for SIDS alert system [19], the
modified Pfaffian technique [20], the conserved quantities
method [21], the Darboux transformation [22], and a com-
putational intelligence approach [23].

In [24], the N-soliton solutions, soliton molecules, and
asymmetric solitons of the Korteweg-de Vries-Caudrey-
Dodd-Gibbon equation were obtained by means of the veloc-
ity resonance method by Ma et al. Researchers analyzed the
higher-order algebraic soliton solutions of the Gerdjikov-
Ivanov equation by using the Darboux transformation and
some limit technique, and according to the asymptotic bal-
ance between different algebraic terms, they obtained the
asymptotic expressions of algebraic soliton solutions [25].
Wang studied the multisoliton solutions of the (2+1)
-dimensional PT-symmetric couplers with varying coefhi-
cients by using the homogeneous balance method [26]. The
N-soliton solutions, M-breather solutions, and hybrid ones
composed of solitons and breathers were constructed in a
time-dependent KP equation by Wu [27]. Wang and Chen
[28] investigated the higher-order Sawada-Kotera-type
equation and the higher-order Lax-type equation in fluids.
A (2 + 1)-dimensional coupled nonlinear partial differential
equation with variable coefficients in an inhomogeneous
medium according to the Hirota bilinear form and symbolic
computation, the breather wave solutions and lump solutions
were constructed by using the extended homoclinic breather
technique and the generalized positive quadratic function
method in Ref. [29]. Moreover, Sadat et al. [30] got lump-
type solutions and their interaction solutions with one- or
two-stripe solutions through the Hirota bilinear scheme
and the Cole-Hopf transformation for a generalized (3 + 1)
shallow water-like equation. In addition, a kind of lump solu-
tion and two classes of interaction solutions were discussed to
the (2 + 1)-dimensional generalized KdV equation with the
aid of the symbolic computation system Mathematica and
Hirota bilinear scheme [31].

The liquid with gas bubble problem has been made in
the propagation of weakly nonlinear waves by Kudryashov
and coauthors [32, 33]. In [34], a generalized (3 + 1)-dimen-
sional ((3 + 1)-D) nonlinear wave (NLW) equation has been
investigated to find the first-order lump wave solution and
second-order lump wave solution which is given

(Zt + ¢122x + ¢22xxx + ¢32x)x + ¢4Zyy + ¢Szzz =0, (1)

and also, ¢, (i=1,---,5) is the constant coeflicient. With
¢, =0, the above equation is transformed to the (3 +1)
-dimensional generalized KP equation. N-soliton solutions
and periodic wave solutions were studied for Equation (1)
in liquid with gas bubbles in [35]. The (3 +1)-D variable-
coefficient (VC) generalized NLW equation [36] is taken
as follows:

(Zt + ¢1 (l’)ZZx + ¢2(t)zxxx + ¢3(t)zx)x

- (2)
+ ¢4(t)2yy + ¢5(t)zzz =0,
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and also, ¢,(t) (i=1,---,5) is the variable coefficient and
2=23(x,y,2,t) is the wave amplitude (unknown function)
that should be searched. Equation (2) is a variable coeflicient
case of (1) that has been investigated in Refs. [34, 35]. The
bilinear form, Bécklund transformation, Lax pair, and infi-
nitely many conservation laws were obtained via the binary
Bell polynomials for a generalized (3 + 1)-D VC NLW equa-
tion by Deng and Gao [36]. In [37], for Equation (2), a peri-
odic-shape lump solution, a parabolic-shape lump solution,
a cubic-shape lump solution, and interaction solutions
between lump and one solitary wave and between lump and
two solitary waves were investigated. Also, Guo and Chen
[38] studied the multisoliton solutions and periodic solutions
including X—periodic, Y-periodic, and 2-periodic wave solu-
tions. A few of rational exact solution for the (3+1)-D VC
NLW equation has been studied in [39].

Hirota’s bilinear method has always been a powerful tool
for solving the N-soliton solution of the nonlinear evolution
equation [40-42]. Since this method was proposed by
Hirota, many scholars have continuously improved it to
obtain the exact solution other than the N-soliton solution.
Based on the bilinear method, Satsuma and Ablowitz pro-
posed a long-wave limit method to obtain the lump solution,
which decays algebraically in space [43]; Ohta and Yang
found a way to get general rogue waves for Davey-
Stewartson I system [44]; by means of bilinear approach,
Lou discovered soliton solutions with even numbers and
soliton solutions with odd numbers in nonlocal systems
[45]; in recent years, the velocity resonance theory [46]
and the resonance conditions mentioned in Refs. [47, 48]
have further improved this method to better explain physical
phenomena. Many researchers used various methods to
study the nonlinear models by using the Hirota bilinear
technique (HBT), such as a (3 + 1)-dimensional nonlinear
evolution equation [49], the generalized variable-coeflicient
Kadomtsev—Petviashvili equation [50], the new (3+1)-
dimensional generalized Kadomtsev-Petviashvili equation
[51], and a generalized (3+1)-D VC NLW equation [52].
Through these methods, some exact solutions of the nonlin-
ear models of equations were obtained. In order to really
understand these physical phenomena, it is of immense
importance to solve nonlinear partial differential equations
(NLPDEs) which govern these aforementioned phenomena.
However, there is no general systematic theory that can be
applied to NLPDEs so that their analytic solutions can be
obtained. Nevertheless, in recent times, scientists have devel-
oped effective techniques to obtain viable analytical solutions
to NLPDEs, such as some nonlinear equations, for example,
the (3 + 1)-dimensional BKP-Boussinesq equation [53], the
generalized BKP equation [54], and new integrable Boussi-
nesq equations of distinct dimensions [55]. In [56], the
M-lump solution and N-soliton solution of the (2+1)-
dimensional variable-coefficient Caudrey-Dodd-Gibbon-
Kotera-Sawada equation were studied. In particular, more
and much attention has been paid to constructing exact
lump solutions to the third-order evolution equation [57]
arising propagation of long waves over shallow water. In
[58], a weight number was utilized in an algorithm to con-
vey the Hirota condition while transforming the Hirota
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function in wave vectors to a homogeneous polynomial.
Also, a generalized algorithm to prove the Hirota conditions
was suggested by comparing degrees of the multivariate
polynomials derived from the Hirota function in wave vec-
tors by Ma [59]. In addition, N-soliton solutions in the case
of nonlocal integrable equations have been presented by
Riemann-Hilbert problems containing nonlocal reverse-
space nonlinear Schrédinger hierarchies [60] and nonlocal
real reverse-space time matrix AKNS hierarchies [61]. The
simplified Hirota’s technique with new complex forms was
developed suitably to construct multiple-soliton solutions
with a complex structure for modified KdV-Sine-Gordon
equation in integrable form by Wazwaz and Kaur [62].
According to the bilinear forms, the novel N-soliton solu-
tions of (1+ 1) and (2 + 1)-dimensional generalized Broer-
Kaup systems were obtained by using Hirota’s bilinear
method in [63].

Motivated by the above studies, we apply the proposed
analytical method which is presented by [39] to solve the
mentioned problems above. The advantage of the proposed
method is that it can be applied to the integrable model
and will be obtained plenty of combined damped sinusoidal
oscillation solutions with three kinds of plotted graphs.

The rest of the paper is organized as follows: Section 2
presents the definition of the binary Bell polynomials and
their properties. Also, the bilinear form of the (3+1)-D
VC generalized NLW equation is constructed in Section 3.
The proposed method HBT, for obtaining the combined
damped sinusoidal oscillation solutions of Equation (2), is
presented in Section 4. Finally, in Section 5, we briefly sum-
marize and discuss the results in a conclusion.

2. Binary Bell Polynomials

Through Refs. [39, 64], take A =A(x,,x,,--,x,) be a C®
function with multivariables, the general form can be
written as

_ -1 ni A
X(A’) = Ynl,m,nj (Adlxl,‘-‘,djxj) =e€ a;l: ax;e > (3)

X151 X

it is named the multi-D Bell polynomials as follows:

Ay =0 -

1%

;d,:o,...’n

d.
.ax;/\, oniE/\,dlzo,...,nl;... ;

7

(4)

and we have

Yi(A) =4, Yy(A) = Ay, + A2,
Y;(A) = /\ AL A e A= A(x t),
Yo (A) = A + A, ©)

YZx,t(A) = A29:,1‘ + AZxAt + ZAx,tAx + )‘ch)‘t’

The multidimensional binary Bell polynomials can be
written as

anx,,w,njxl(.ul’ /’LZ)

n,(A)‘ {/"ldlxl.--v,d,.xj' dytdy+e+d;, is  odd,
Ay ond

d+dy+---+d;, is even.

/’lzdlxl,u-,djx,v‘ ]

(6)

We have the following conditions:

Z () = ph
Zoe(p ty) = phgy + .”1;25’ (7)
2 (o o) = oy + Py by -

Proposition 1. Let u,=In (Q,/Q,), u,=1n (Q,Q,), then
the relations between binary Bell polynomials and Hirota
D-operator read

Z >
n;xl,-..,njx](tul AMZ) ,ul:ln (91/92))142:1“ (QIQZ) (8)

= (9192)_1D25 DZ;Q1QZ’

with Hirota operator

Proposition 2. Take Z(y)=Y,6P4 ., ...
In (Q,/9Q,), 4, =1n (2,0Q,), we have

=0 and u, =

2811 nyXg,
Z(Slzyd Xy

/"1’/"2) =

(10)
.“1) Uy) =

which need to satisfy

R(y2y) =R(r') =R =Ry + ) - Rty — 1) =0.
(11)



The generalized Bell polynomials Ynlx],_,_)njxj(f) is as

(9192)71DZI D:jQIQZ

= anxl,---,njxj (ﬂl’ AMZ)‘

t=In (Q,/9,), py=In (0,0;)

— Z ) =+
Xy J(!ﬁ th+y) sy=In (Q,/0,),p=In (2,Q,)
3

]
Yoo [n
kz kZH < )S'Bklxl,---,k}x] (Y) Y(nl—kl)x1,~~,(nj—kj)x7 (#1)

1 o i=1

(12)
The Cole-Hopf relation is as follows:
s (# =1n ()
_ (pnlxl,---,n}-xj i
P
0,Q,)'D" - DY 0,0
(2,£2,) S (2) 0,10,
. n Yoo (n
=¢ Z ZH S‘Bk 1X1 klxl( )go(nl_kl)xl""'(”d_kl>xl,
ky kj I=1 kl
(13)
with
Py
Y,(u)=—,
() p
Pox
Yol B) = V2x+7ﬁ (14)
y2x(Py Yx,y(Px q)Zx,y
v (Hs + =
Y, y(.”1 ) = 9 s P

3. Bilinear Form Equation to the Equation in
Liquid with Gas Bubble

To discover the linearizing representation, take the following
form:

u=c(t)m,, + ug,

(15)

T =1(X, Y, 2, t).
Inserting Equation (15) into Equation (2), one obtains
R(m) = d t g ) +c(t i t
(m) = (60)) szt +e(t) = m(x 1)
2( 9 ?
O (e 20
2 az
+ 9, (0)(e(t) (32 ) 2

4 2

* 6a(8)e(t) %”(X’)’» 2 1) + 5 (1)c(t) %

(X, y, 2, t)

(%, ¥, 2, t)
2 aZ

() 3 5 0) + B0) 357003, ) =0,
(16)
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with

12¢2(t) (17)

W=

The novel equation R(7) is as

m(ﬂ) = s’Bx,t + ¢2(t) (5134x + 3$B§x) + ¢3(t)m2x
+ ¢4(t)m2y + ¢5(t)m22 (18)
=0.

Applying a change of dependent variable,

12¢,(1)

n=In(g)eu= 6.0

In(g),. (19)

Theorem 3. With the following relations:

< (9w (20)

into Equation (2), the (3+ 1)-D VC NLW equation can be
stated as follows:

R(9) = (99 — 9x9:) + 6:(t) (994 — 49,93, + 39%)

+ ¢5(t)(99. — 93)
¢4(t) (ggyy - gi) + ¢5(t) (ggzz — gi)
_ é (Dth +6,(H)D + $,(£)D2 + ¢,(1)D?
+45()D2) 9.9 =0,

where g = g(x,y,z,t) and m=n(x,y,z,t).

4. Damped Oscillation Solutions for
Generalized CV NLW Equation

The two subsections including damped sinusoidal oscilla-
tions wave solutions and combined damped sinusoidal
oscillation wave solutions are investigated in the following
subsections.

4.1. Damped Oscillation Wave Solutions. Here, we utilize to
formulate the new exact solutions to the (3 +1)-dimen-
sional generalized CV NLW equation. Consider the below
function for studying the damped oscillation wave solu-
tions as

g=e"(04(t) cos (a;) +05(1) sin (a3)),
(22)

a=0x+By+8z+o(t), 1=1,2,3.
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Afterwards, the values a;, 8, 8;, (1), (I=1,2, 3) will be
found. By making use of Equation (22) into (21) and tak-
ing the coefficients, each power of cos (a,) and sin (a,) to
zero yields a system of equations (algebraic) (these are not
collected here for the minimalist) for «, 8,0, 0,(¢), (I=
1,2,3). These algebraic equations by using the emblematic
computation software like Maple give the solutions in the fol-
lowing with using u = (12¢,/¢,)(In g),, as follows:

4 2.2 4 2

0" 98485+ 6 0,703 P, 5,55 + 003" P, 5455 — ) P 5,85
2 2 2 2

— 03738485 = B Pysass — By = 8,7 ¢s55,55

2 _
= 83755455 — S,0,8485 — S3038,55 = 0,

45455

3 3
—4 0,7 030,5,55 — 40,037 $8485 + 2 05053035485 + 2 B, B3h,5485

+20,03¢55,55 + S,0035,55 + S30,5,55 =0,

—S40,85 + Sst,5, =0,

(23)
4 “24¢2542 +4 0‘34‘/’2552 - “22¢3542 - 0632¢3552 - /322¢4542
— Blb,s5E = 8,705, — 857 sss? — S,055,7 — Sya355% =0, where s;=0,(t) and S;=(d/dt)o,(t),I=1,---,5 and the
obtained solutions are as follows:
=S40555 + S35, =0,
4.1.1. Set I Solutions
(t \/(3 32 (0 = 3)* (0 + a3)” + A ) (32, (oy — t3) (o3 + 1) + Ay )0y (8)
os(t) = ,
3oz, (ay - 0‘3)2(“2 + “3)2 +A,
_ (“2 (0‘22(/52 +3 “32¢2 ‘/’3) (“2 — Q3 ) + Az)t
Uz(t) - a2 — a2
2 3
30,20, + a2h, — 2 ay?) + At
o3(t) = (“3( 0 ¢, + o ﬁzz _‘/’;)2(“2 o3 ) 3) o (24)
2 3
Ay =¢y(a ;- “3[”2)2 + s (05 - “382)2>
Ay=—¢, ("‘zﬁz2 + “2/332 -2 “3ﬁ2ﬁ3) — s (a 1,0, + 0,85° = 2 0,8,0 )
Ay=-¢, (2 aB,p; - “3[;22 - 0‘3:832) = $5(2,6,85 - “3632)’
where ¢, = ¢,(t),1=1,---,5and o,(t), 0,(t) free functions of o, (t)=04(t)=¢;=¢,=¢3=¢, =t ¢s=2tz2=1y=2,
tand «;, 35, 0;, (1= 1, 2, 3), are free values. It concludes alon
B O ( ) 8 Ci=C=a;=p,=08;=a,=,=p;=6,

with the bilinear equation; the exact solution will be as

Z = 1% (Ing(x.y,2.1)),,

((0°10x%) g(x, y, 2, 1)) g (%, 3, 2, t) — ((0/0x) (%, , Z, 1))’
(9(xy 2 1))

(25)

g(x)y’ Z l’) — ea1x+/31y+81z+:71(t) (0'4(1') cos
“(apx + oy + 8,z +0,(t)) (26)
+05(t) sin (a3x + B3y + 832 + 05(1))).
Figures 1-3, respectively, show the analysis of treatment

of periodic wave solution with graphs of X with the below-
selected parameters:

C,=Cy=la,=B,=0,=02,a,=,=0.1,
a;=P,=0,=03,8,=04,

:63:1’

¢, =cos (t), p, =cos (2t), ¢; =cos (2t + 1),
¢y =cos (2t +2),¢s=cos (2t +3),z=1,y=1,

Ci=Cy=0;=0,=08,=a,=f,=f;=
a;=2,0,(t)=1,04(t)=2,

¢=L¢,=1,¢;=1¢,=1,¢;=1,z=1,y=-1,

a;=2,0,(t)=1,04(t)=2,

8,=8,=1,

(27)

in Equation (25).

4.1.2. Set II Solutions

/53:“3—&’
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— x=-30 — x=10
x=-10 — x=30
x=0

FiGure 1: Plot of periodic wave solution (25) (Z,) (3D plot, density plot, and 2D plot ¢), respectively.

-2.5x 10°

-2.x10°

-1.5x 10°

-1.x 10°

-5.x 10°

-15

20000 4

10000 4

— x=-30 — Xx=5

— Xx=-5 — x=30

— x=0

FIGURE 2: Plot of periodic wave solution (25) (X,) (3D plot, density plot, and 2D plot t), respectively.

~1.2x10°
-1.x 10° 4
-8.x 107

-6.x 107 4

-4.x 107

x=-10
x=-1
— x=0

— x=1
— x=10

F1Gure 3: Plot of periodic wave solution (25) (X,) (3D plot, density plot, and 2D plot t), respectively.
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os(t) = \/3 a22¢2(oc22 - a32)2 + (/55(06283 _ 06382)204(1‘)
5 \/3 52, (o — a?)” + 5 (o205

(0‘22‘/’2 (“22 +3 “32) (“22 - “32) + Al)t

ay(a? - as?)

>

“362)2

0,(t) = +Cp
@z, (3,7 + ) (a0 — as”) + Ayt

+C
ay?(ay? — as?) 7

o3(t) = (

A= _(“22 - "‘32) (0‘2Z¢3 + /322¢4)
— 0,5 (a2622 + 0,0, - 2a38,0;),

Ay =—ag (0‘22¢3 + ﬁ22¢4) (0‘22 - “32)
- “22¢5 (2 0,05 - “3822 - “3632)»
(28)
where o(t), 0,(t) free functions of t and a;, 3,6, (I=1, 2,

3), are free values. It concludes along with the bilinear
equation; the exact solution will be as

z,= ¢¢2 (In g(x, 2, 1)) .,

a1x+ﬁ1y+8lz+al (t)

g(xy.21) =

. (04(1‘) cos (a,x + By + 8,2+ 0,(t))

(“34¢2 - “32‘%53 - /332¢4 - 822¢5 - 632‘/’5)t

3

o;(t) = +C,,
a,=p,=0,
(30)

where o,(t), 0,(t) free functions of t and «;, 8,8, (I=1,2,
3), are free values. It concludes along with the bilinear
equation; the exact solution will be as

Z;= q;fz (In g(x, 2, 1)),

(31)

9%y, 2, 1) = X PI000 g, (1) cos (8,2 + 0,(1))

+05(t) sin (azx + By + 852+ 05(1))).
4.1.4. Set IV Solutions
(4 0‘24‘/’2 - "‘22¢’3 - /332‘/’4 - 532‘/’5)t
)

o5(t) = (4 0, ¢, - a’ps - By, - 532¢5)t ‘G, (32)
%)

0,(t) = +C,,

o5(t) = C304(t),

where 0(t), 0,(t) free functions of t and a;, 8,6, (I=1, 2,

+05(t) sin (oc3x+ “3_[;2)/ +63z+03(t)>>. 3), are free values. It concludes along with the bilinear
& equation; the exact solution will be as
(29)
12
4.1.3. Set III Solutions 2= ¢—1¢2 (In g(x.y,21)),,»
ouff) = 4 \/(3 a5l +0,°h5) $50,04(t) g(x,y, 2, t) = ¥ Pzl (g (1) (33)
s(f) =2 3(x34¢2+522¢5 ’ - cos (a,x + By + 832+ 0,(1))
+05(t) sin (a,x + B3y + 852+ 05(1))).
0,(t)=-2 % +Cp,
’ 4.1.5. Set V Solutions
oy = | - oA o)+ o)) 0 o0 (000" (B4, +095) o
as(o4(t )) os(1)
o3(t) = J B _(‘75(t))20‘34¢2((‘74(t))2 +3 (05()) ) + “32‘/’3(04(?)2(05(t))2 + (‘74(t))4(/522¢4 +622¢5) dt+C,,
(04(1))*(05(t)) a5

o, = Cya,
B,

Bs= c,’
é

8= 2

(34)
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r d
-10| 0 0
-2000
-4000

-6000

-8000

10000

12000

14000

~16000

18000 -

— x=-10 — Xx=5
— x=-5 — x=10
x=0

FIGURE 4: Plot of periodic wave solution (35) (X5) (3D plot, density plot, and 2D plot t), respectively.

where o(t), 0,(t) free functions of t and a;, 3,6, (I=1, 2,
3), are free values. It concludes along with the bilinear equa-
tion; the exact solution will be as

124,

1

3=

(In g(x, 7,2, 1)) 0

a1x+ﬁ1y+6 z+0,(t)

9(%y:2,t) =

. <04(t) cos (Csazx + B,y + 8,z +0,(t)) +05(t)

- sin <a3x+ By + ?3 +a3(t)>>

(35)

Figures 4-6, respectively, show the analysis of treatment
of periodic wave solution with graphs of X with the below-
selected parameters:

C=C,=1,C3=2,a;=f,=
a;=3;=0,=0.3,8;=04,
o,(t)=0,(t)=¢;=¢,=¢;=¢,=6,¢s=2t,z=1y=2,
C,=C,=1,C3=2,a,=p,=
ay=PB;=

¢, =t+1,¢,=sin (t),¢,=t+1,¢,=t- 1,
¢ps=2t+1,z=1y=2,

8,=0.2,B,=0.1,

8,=02,8,=0.1,
0,=0.3,8,=0.4,0,(t) =t,0,(t) = t cos (t),

C,=C,=1,C3=2,a,=p,=
a;=p;=

¢, =19,

8,=0.2,p,=0.1,
8,=0.3,05,=04,0,(t) =t,0,(t) =sin (£),

=2,¢;=3,¢,=3,¢;=2,z=1y=1,
(36)

in Equation (35).

4.2. Combined Damped Oscillation Wave Solutions. Here, we
utilize to formulate the new exact solutions to the (3 +1)-
dimensional generalized CV NLW equation. Consider the
below function for studying the combined damped oscilla-
tion wave solutions as

g=e"(05(t) cos (ay) + 06(t) sin (a,))
+ €% (05(t) cos (ay) +0g(t) sin (as)), (37)

a=ax+Py+8z+o(t), 1=1,2,34

Afterwards, the values «;, 8,8, 0/(t), (I=1,2,3,4) will
be found. By making use of Equation (37) into (21) and tak-
ing the coefficients, each power of cos (a,) and sin (a,),
cos (a,) and sin (a,) to zero yields a system of equations
(algebraic) (these are not collected here for the minimalist)
for a), B, 8;,04(t), (1=1,2,3,4). These algebraic equations
by using the emblematic computation software like Maple

give the solutions in the following with using u = (12¢,/¢,)
(In g),, as follows:
4.2.1. Set I Solutions

o;(t) =0,

04() = Cs,

o5(t)
t) = — arct
0,(t) arctan (%(ﬂ)
L 0:05(8,0,~ B.0 + B33~ Bi3)0 | .
1
@, — s,

o,(t) = JM(t)dt+ Cy

ay=0a,=p,=6,=0,

8,°¢s
B’

¢y=-
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Figure 5: Plot of periodic wave solution (35) (25) (3D plot, density plot, and 2D plot t), respectively.

20

-100 4

-120 A

—_— x=-2
— x=0
— Xx=2

FiGuRre 6: Plot of periodic wave solution (35) (25) (3D plot, density plot, and 2D plot ¢), respectively.

_ 0s(t)(As + Ag —Ay) + A, +0g(1) (A, + A5) — Ay
Us(t)ﬁzz((%(t))z + (‘76(t)>2) (a; = a3)

1=03() (510 ) B2 (07 + (050 i - )

+0g(t)B,7 () — )
. ((%adt))%(ﬂ +05(1) %05(0),

A= (Us(t))z (“14522% + “34ﬁ22¢2 + “12[;22‘%53 + “32B22¢3
- 512822‘/’5 + 522812‘/’5 + 522832‘/’5 - 532822‘/’5)’

Az = (US(t))Z (“14“34ﬁz4¢22 + 0‘32ﬁ22¢3 + 1)’

M(t)

.= (50 B2 (05(0)* + 00)) (o -t

As=2a,03B,°¢, (20, - 3oy + 2a57)
“((o5(t))” + (04(t))?)
Ag=2 (Ga(t))z (“1 “3/322¢3 - ﬁ153822¢5 + ﬁ228183¢5)’

A; = (Us(t))z (“12ﬁ22¢3 -2 0‘10‘3[;229‘53 - ﬁ12522¢5
+2B,B305 b5+ B,°0,° 5 — 2 8,°8,05¢5
+ ﬁ22532¢5 - ﬁ32522¢5)>
(38)

where o,(t), 0,(t) free functions of t and «;, 8,6, (I=1,2,
3), are free values. It concludes along with the bilinear
equation; the exact solution will be as

12
Z1 = T(/)Z (ln g)xx’
1
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g =Pzl (ay(t) cos (B,y + 8,2 +0,(t)) 0,(t) = — arctan (05(t))
0y (1) sin (Byy + 8,2+ 03(1)) N U
+6“3x+53}/+53z+63<t>(0'7(t) cos (0'4(1')) +O'8(t) sin (0_4(1,)))' +2 2(/)5([;1 2 ;1%2 123%2 3 _ﬁ3 Z)t + CI’
(39) 2 2
o5(t) = JM(t)dt +C,,
Set I-I:
a=0,=p,=0,=0,
os(t) =0, 52
0og(t) = — tan (—0,(t) + C3)0, (), $y=- ;2f5>
O'Z(t) — 262¢5(ﬁ162 B ﬁ251 + 5283 B ﬁ382)t + C1s AI +A2 .|.A3

B (o, — a3) M(t) =

+C,,

0,(0B,2((05(1) + (05(6))%) (o, - at5)

A =20,(t) ((05(t))2 + (06(t))2) (2 a’ ;B ¢,
o _p o8 _ -3 “12“32522% +2 “1“33522‘/52 + "‘1“3ﬁ22¢3
ay=a,=p,=86,=0,

- ﬁ1ﬁ3822‘/55 + .8228183‘/55)’

oy(t) = JM(t)dt+ C,,

6, =— 8,°¢
A 2= B =) ({0500 + (oo(0))
_ A +A, . d B d
M= 4G (000 st =050 gyor(0)
L d d
Ay =—05(t)o,(t) (ﬁ22¢2(“1 —a5)t+ B2 (o — o)’ + (06(t)) E07<t> —05(1) (% Gﬁ(t))07(t)
= ¢5(B162 = 10, + Br05— B50,)
Bi5ar Bbr s ), (030 g 0) 050050 1) ).
A,= 522(% —a;) (%(t) (jt 04@) o5(t) Az =-0,(t) ((2‘75(t))2 + (f2’6(t))2)2(“1j/322¢2 2“3;1/322%
P d + “12.32 ¢;+ “32ﬁ2 $5— P76, ¢s + B8, ¢s
—05(t)o,(1) 7% (t) +05(t) E‘U(t) +B,205 s - ﬂ32522¢5)’
oS00, )

(40)  where o,(t), 0,(t) free functions of ¢ and a;, 8,6, (I=1,2,
3,4), are free values. It concludes along with the bilinear
where o(t), 0,(t) free functions of t and a;, 3,6, (I=1, 2, equation; the exact solution will be as
3), are free values. It concludes along with the bilinear

equation; the exact solution will be as 3, = 12, (In g),, g = e Pu+dat) (g (1) cos (B,y + 0,z
¢1 XX
R +0(0) +0¢(t) sin (Byy + 8,2 +03(1))
g 4 B85 030) (5 (1) cos (0, (1)) + 05(t) sin (0,(1)))-

g = e BIBET0) (g (1) cos (By + 8,2+ 0,(1)) (43)

_ (41)

+06(t) sin (Byy +0,2 +0,(1))) 4.2.2. Set II Solutions

+ ¥ P02 (5 (1) cos (0,(t))

+0g(t) sin (0,(t))). 04(t) = Cs,
Set I-II: 770 =0

_ 05(1)
0y(t) = - tan (-0, (t) + C3)a(1), oa(f) =~ arctan (am) ver
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a,=f,=6,=08,=0,

J Aj+A +A,+ A,
o5(t) ((05(8))° + (05())°) (& — )

A =o0(t) ((‘75(t))2 + (Us(t))z) (0‘14‘/’2 + “34‘#52 + 0‘12‘/’3
+ 0‘32¢3 + ﬁ12¢4 + ﬁ32¢4 + 512¢5 + ¢5632)’

d
-
5= 0y(0)(es =) (05(0)* G0) + 009

(@0 +a0) G s0) + ) ),

o,(t) = dt+C,,

%aoaamf+wam6mrﬂﬁ

Ay==204(t)((05())" + (05(1))°) (2, a5, - 3o, a9,
+2 0‘1“33‘/’2 ooz + B Ss¢,+ 51¢563)>

(44)

where o,(t), 0,(t) free functions of t and «;, 8,8, (I=1,2,

3,4), are free values. It concludes along with the bilinear
equation; the exact solution will be as

12
5, - 126

(In g),,, g =" P20 (g5(1) cos (o,(t))
1

+ 06(t) sin (o‘z(t))) + 3“3"*/33)’*53“‘73(0

~(07(1) cos (a,(1)) + 05(t) sin (04(1)))-

(45)
Set II-1
o,(t)=Cp,
o5(t) =0,
04(t) =—tan (—o,(t) + C3)0,(1),
ay=p,=0,=0,=0,
A+ A,
0= [ = oy 4 o
(46)

A =-04(t)o,(t)(d(a; — az)" + s, - a3)’?
+¢,(8, - ﬁ3)2 +¢5(8; - 63)2)’

2=~ =) (a0

04(8) 20,1

~as(o(t) 50,0 -

+ (%aé(t))a7(t)>,

11

where o,(t), 0,(t) free functions of t and «;, 8,6, (I=1,2,
3), are free values. It concludes along with the bilinear
equation; the exact solution will be as

m- g
g =€ B0 (0(1) cos (0,(1)) + (1) sin (a5(1))

+ e B0 (0 (1) cos (0,(1)) + 0y(¢) sin (0,4(1)))

(In g)

(47)

Set II-1I:
0,(t) = — arctan <Z5Elt‘;) +Cp,
og(t) =—tan (—o,(t) + C3)0,(t),

a,=f,=8,=08,=0,

A;+A +A
5 _ _ 32 1 22 d CZ)

0= | - s e

1= (3700 (0500 + 00)7) (o =),

+04(1) (%GG(t)>O'7(t)>,

Ay==0;(t)((05(1))" + (05(1))") (¢, - a5)*
+¢s(a; — a3)” + ¢, (B, = B5)* + ¢5(8; = 85)7),
(48)
where o,(t), 0,(t) free functions of t and «;, §,0), (I=1, 2,

3,4), are free values. It concludes along with the bilinear
equation; the exact solution will be as

Z= 1;?2 (Ing),.g=

e 1X+B,y+8, Z+01(t)( 5(t) cos (O'Z(t))

+06(t) sin (0,(t))) + e P50 (6 (1) cos (0,(1))
+0g(t) sin (o,(t))).
(49)

Figures 7 and 8, respectively, show the analysis of
treatment of periodic wave solution with graphs of X with
the below-selected parameters:

C,=C,=1,C;=0.2,a,
By=0.3,8,=04,

=6,=02p,=a;=0.1,
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Figure 7: Plot of periodic wave solution (49) (

-0.02

-0.01

7372_10123456
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0.01 1

— x=85 — x=105
— x=90 — x=110
—— x=100

%) (3D plot, density plot, and 2D plot ¢), respectively.

-4 -3 \-2) -1/ 0 1 2 3 4
t
— x=100 — x=130
— x=110 —— x=140
— x=120

F1Gure 8: Plot of periodic wave solution (49) (24) (3D plot, density plot, and 2D plot t), respectively.

o,(t)=05(t)=06(t)=0,(t)=¢;=¢,=¢s=t, ¢, =1+ 1,
$:=2t,z=1,y=1,

C,=C,=1,C;=0.2,0,=8,=028,=a;=0.1, 3,=0.3,
03=0.4,0,(t) =sin (t),0,(t) = sin (2t),
o5(t) =sin (3t), o4(t) = sin (4t), 0,(t) =sin (t), ¢, =3,
0,=2¢;=2¢,=1,¢5=2,z=1y=1,
(50)
in equation (49).
4.2.3. Set III Solutions. III-I:

12¢ lX X zZ+0
5= 28 i ), g =00 1) sin (ﬂzy
1

+ ﬁ284z Bz 8,05(B104 — B304 — P40 + B,05)1
Bs ﬁ4 (0 — a3)
+ C1> + etx3x+ﬁ3y+832—IA1+A2/as(t)06(t)ﬁ4 (o0 —0x) dt

- 0g(t) sin <,B4y +0,2

4‘/55(131‘S = B304 — By + B,05)t
By —a3) +C3)’

Ay =-04(t)og(1) (ﬁ42¢2(“1 “3)4 + ﬁ42¢3 (o = “3)2
- ¢5 ((ﬁ184 - /3364)2 - (ﬁ481 - .3483)2))’

d d
= =B =) (0 () 0n() - 0s() i)
d
+0g(t) aaé(t)> .
51)
III-1I:
¢2 o X+, y+0,z+0, (1)

Zy= 5~ (ng).g=c
1
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: <05(t) cos (ﬁzy + ‘ijz — arctan (ngg) +A1> Ay ==06(1)(07(1) B, $ (0 — a3)" + 07 (B s (o — )

5 6 = ¢s(B10s — P304 — By0y + B405) (07(1) 3104
+04(t) sin (ﬁzy + ﬁzﬁ £ _ arctan (ngg) + A1)> = 07(£) B30, + 07(1) B40) — 07(1)By05 — 2 05(1) B40,))-
4 6
+ e“3x+f53}’+53z—jA2+A3/‘7&<t)ﬁ42((‘75(‘))2+(‘76(t))2)(“1_“3) dt (53)
. II-1V:
- 0g(t) sin (ﬁ4y +0,2
é 6, — B:6,— 3,8, + ,05)t
2 495 (819, ‘3;8(3“14_ oiz; 1+ B465) " C3>, 5= I;Z/’z (Ing)..,
A =2 B204¢s(B194 _25354 — By + ﬁ483)t’ g =enPurazall) (g (1) cos (X)) + 04 (t) sin (X,))
By (0 — a3) + ea3x+ﬁ3y+63z—J‘A3+A4/J7(t)ﬁ4z((Us(t))2+(05(t))2)(tx1 —ay) dt
A, =B (o —da3) (((05:))2 +(04(1))%) d . <a7(t) cos (X,) - tan (Q—Jm dt)
(a0 for(01= o)) +oultn) Gt s (%)),

_ Pr04z os(1)
X, =By+ B, — arctan <06(t)> + Ay t,

4

Ay =—0g(1) ((Us(t))z + (Us(t))z) (542?52(“1 - “3)4

X2: 4 84Z 4 s
+ B9 (00 = 03)?) (=95 (B84 = sS4’ Buy+ 8,z +0,(t)

— (B46, — B455)))- Ay ==208,05(B0s — B30, = B0, + ByS5)
d
(52) + By (o —a3) Ea4(t),
TIL-IIT: A =2 B2045(B10s — B304 — 401 + BySs5) ’
. ’ By’ (o — at3)
2 2 2 4
1y, e Ay =~((05(0)* + (06(1)) (3, ()8, bl ~ )

27 g, (N g =D oin (08,2301~ @)~ (8104~ B0, ~ B,

) (ﬁ b B9,z + B403)(07 (1) B184 — 07(£) B304 + 05 (1) 3,0,

; s ﬁ; 6,50, B0 + B0 —07(t)B403 —205(t)B04))
¢s(B94 — ~ P40t )t

P Cl) Ay= B2~ ) (((05(0) + (04(1))?)

e [ 0B A (020 or(0 = (o0 ) n(t) = o9

“(07(t) cos (Byy + 0,z +04(t)) d d

- tan <C3— Jﬁ dt) o, (t) sin (By+ 6,2+ 04(t))>, ' (E GS(t)) o7{)7s(8) + 97 (1)26 (1) EGﬁ(t)) .

Ay
(54)
Ag = Byl — a3),
d Figure 9 sh h lysis of treatment of periodi
Ay =-20495(B,04 = B304 = By01 + B103) + Ay Ea‘l(t)’ wave gsl(l)hitions v(s)/::,}sl tgrzpir;a (})Ifs SZOwitheatlrlrelebel(())w—zzlegteg
p parameters:
==y =) (0:(0)a(0) Gy 1)
p p C,=C=1,C=02a,=8,=02,B,=a,=0.1,
- (Gou0 )astron(t)+ o506 w0 B.=03,6,-04, 3 (53)

~0u(0) 3070

in Equation (54).



14 Advances in Mathematical Physics

T ]
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t
—-100
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Ficure 9: Plot of periodic wave solution (54) (Z,,) (3D plot, density plot, and 2D plot f), respectively.

4.2.4. Set IV Solutions. IV-I:
IV-II:

5= 202 1 ) | g = ellommamnn @) B0 (4 sin (C,)
ol =
+ e“3x+ﬁ3}’+532+2 (t(B194Bs— B304 By +010,$5-838,4¢5)/ay )+, (t)+In (Us(t)/as(t))o-s(t)
(3 di,” — ‘/’4(4 /312 -8B,B;+ 4ﬁ32 -3 .B4z) —¢s (4612 -868,0; + 4832 -3 542))t> (56)

3a

x sin (tx4x + By +0,2—

_ 1oy(By - Bs)” +¢5(0, - 85)° '

%2 3 ot
IV-III:
12¢
2p= —z(ln )
ol

g = elostasmaor O)sloyO)thyrdizon(t) (5 () cos ( C, — arctan 95(1) +0g(t) sin | C, —arctan 95(1)
(1) (1)

& ersrbridses [((arehi (o (00 (o))t

(3 ¢3“42 B ‘/’4(4 512 - SﬁlﬂS + 41332 B 3:342) B ¢5 (4612 - 8‘3153 + 4832 - 3642))t) , (57)

3ay

x sin (tx4x + By +0,z—

= (05007 +@60)") (000 Gon() = (D)) +u0) () Gost) +0t) o)) ),

4= 20(0)((05(0)° + Ou(0)") BBy = B+ 8,848, ~8,8,0.) ¢, = LS TR =0
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IV-IV:

12¢
23 = ¢—2 (In g),,
1

g= e((rfs(t)arvu%(t)>x/%(f)>+/31y+51zwl(t)(05(t) cos (0,(t)) +04(t) sin (a,(t)))

+ e8P0z 0s (1) (G () cos (ayx + By + 8,2+ 0y (1)) +0g(t) sin (ayx + By + 0,2 +04(1)))s

1 A, + A,
os(0=] -3 0> (0osDosDas (0,07 + o)) ©
as(t) = JAI —3ay((07(1))* +(98(1)°) ((0(0))* (/dt)o (1) + (05(1)) (d1d0)0 (1) + o5 (1) (dldt)o (1)
' =3(05()) 0y = 305(t) (0 (1)) e ’
A= _(as(t)>4(3 ‘»‘53"‘42 - 4.312¢4 +8B,¢,8; - 4¢4.832 +3 .842¢4 - 4512‘/’5 +80,¢50; - 4455532 +3 842¢5)
+2 (Gs(t))207(t) (4 05(t)B1Bypy —4045(1) B3 Lypy +405(1)0,04¢5 —405(1)050,¢5 -3 07(t)“42¢3 - 07(t)ﬁ42¢4
—05(1)8,25) = 3 (05(1))* (830> + B2y + 04705)

=300 (00 + 03(0))) (3010600 ()~ () 000 ) (6 =050 ou(t) + () 1) )

Az =04(t) (3 “42¢3((‘77(t))2 + (as(t))z)z - ¢4((08(t))4 (4 ﬁ12 —-8B,B; + 4ﬁ32 - 3ﬁ42) +14 (Us(t))307(t)/34(ﬁl -Bs)
-4 (Us(t))2<‘77(t))2(_ﬁ3 + B = BB+ B+ By) - Zas(t)(07(t))3ﬁ4(/31 -B5) - ﬁ42(07(t))4)
- ¢5((08(t))4 (4 812 -88,6;+ 4832 - 3642) +14 (Ug(t))3‘77(t)54(81 )
—4 (Os(t))2(07(t))2(‘83 +0; = 04)(=8;+0, +68,) - 20's(t)((f7(t))364(51 -68;) - 642(07(t))4))’
o, = 1(05(1))*($4(B10s(t) = Byos (1) + B07(1))” + §5(8105(t) = 8305 (1) + 8,05(1))*) .
>3 agt((07(1))* +2 (07(1))* (05(1))* + (05(1))*)

(58)
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4.2.5. Set 'V Solutions

12¢
2= ¢—2
1

g = elos(hs a0yt ))x/03<t))+/31y+812+01(t)(O-S(t) cos (0,(t)) +04(t) sin (a,(t)))

+ e8P0z 05 (1) (G () cos (ayx + By + 8,2 + 04 (1)) +0g () sin (ayx + B,y + 8,2 +0,(1))),

0,(t) = - arctan (“5(”) +C,,

(Ing),..

Ue(t)
A, +A
oy () = 2t A —dt,
-5 30, () o~ 30, (D (og(0) s
1 A+ A
o3t)=1 -3 2 : 42 2 wdt+ Gy,
w=-[-3; 7200303 (05 + 0 OP) (@O + @)

1= 30,00+ (4(0)") (030 o0(8)+ (05(0)* a0 +04(6) 0700 ).

Ay =302, ((0,(0)7 + (05(0)2)" + 84((05(1)* (48,2~ 8 BBy + 4857~ 3B2) + 0,(1)B4 (8 (04 (1)) By — 8 (05(1) By
= 2(04(1)05 (1B, =3 (0(1))"By)) + b (03(1)* (48,2 ~ 88,8, + 46, =30,2) + 0, (1)8,(8 (04 (1))"3,
~8(04(1))"8, ~2 (04(1)) 0, (1)8, -3 (0,(1))'8,))

Ay =30g(t)ay((o5(1)* + (04(1))%)

(@030 + 06(6)") (030) G0u(0) =070 o (0)+ o))
020 (03(0) s + (6 ou(0) ) ).

Ay= ((05(1‘))2 + (Ué(t))z) ((Os(t))4(3 9‘53"‘42 - 4ﬁ12¢4 +8B19.f5 - 4¢’4ﬁ32 +3 ﬁ42¢4 - 4512‘/55 +80,¢505
—4¢,0,"+3 842‘/55) + (‘77(t))4(3 ¢y’ + B0, + 642‘/’5) +2 (Us(t))2(07(t))2(3 ¢y’ +2B,°, +29,B,°
-2 .342‘/54 +2 512¢5 -2 842?55) +2 (Us(t))2(07(t))2 (3 ¢3“42 +2 /312‘/54 +2 ‘/54/332 -2 ﬁ42‘/54 +2 612?55
— 48,9505 +2 505" —28,°5) — 14 (0(1))° 05 (t) (B, 44y — Bs$aBs + 610405
—8,8,95) = 20(t)(05(1))* (4 05(1)B1Bss = 07(1)B1 Bus + 07(1) B3 Py — 07(1)818495))s

(95(1))° (94 (B1s() = Bs0s (1) + By07(1))” + §5(8105(t) = 3505(1) + ,07(t))*)
agt ((07(1))" +2(07(1))*(05(t))" + (03 (1))")

1
6= 3

(59)
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_ 12¢,
ol
g =l (as(t) cos <0c2x + “27[34)’ +0,z+ az(t)> +0g(t) sin (azx + szaﬂ +8,2+ az(t)>)
4 4
+ WXy t0ztas (1) (0,(t) cos (agx + B,y + 8,2+ 0,(t)) + 0g(t) sin (ayx + By + 8,2+ 0,4(1))),

x. = (O8()(9005(t) + 4306(t)) — 4406(t)07(1))x (05 () (42P405(t) + @435 (1)) — @uPa06 ()07 (1))y
! 06(1)0s(?) a,05(t)og ()
1 (B, + B, +B;)z

"2 0,04 (0)04(1) (005005 (1) — a,06(0)05(1))
B, = (4,8, + a,8,) (05(1))* + 2 05(£) 0 (1) 2485 + (04(1))* (@0, — €,8,)) (0 (1)),

By = =20()05(t)05(1)06 (1) 2y 04 (2,04 + ,9,),

Z15

(ln g)xx’

By = (04(t)) > ((0(£))* (@20, + a,8,) = 205(£) 05 (£) 0,05 — (05(1))* (0,8, — 4,8,) )

0,(t) = J

3 A +A,
(06(1))* (05 (1)) a2 (0,8, — 2,8,) ((06(1))* + (05(t))°)

dt+C,,

A, = (a5(t))*(04(1)) 20,8, — u482)2<<%05(t)>06(t) - (%GG(t)>05(t)>,

Ay =y ((06(6)) + (05(6))7) (1207 (1)05 (£) s 8,7, (07 (£) 06 (£) &y = 205 (£) g (1)) + (0 (£))7 (4 >,y (3 (05 (1))t 6,
- (%(0)2%2542 +2 (Us(t))2“2a45264 - (06(t))2a42622) + (Gs(t))z("‘254 - “452)2 (a42¢3 + 1342454))

= ~(or(0) () 0, =) (0 Feon(6) = on(6) 7)),
Au= ((03(0)) + (03(0))) (20,28, (0 (105 )0 ~ 05(1)03 ()~ (1) (0 (1) (@28, ~ 0, (405", ~ 7~ B9))

A+ A
[A A 2 2 0 2 2 o 4
7l J (05(1))*(05(1)) arg (@284 — 40,)" ((05(1))” + (07 (1)) '
3 A+ Ag dt
(06(1))* (05(t)) s (0,0, — “462)2((08(t))2 + (U7(t))2) ((as(t))z + (“s(t))z)
A5 =8,8,(07(1)05(t)ay = 05(1)05 (1) @) (407 ()05 (1),  $,85S, +4 (05(t))* (05 (1)) @, s, S5
+ (Us(t))z(os(t))z(“254 - ,0,) (12 0‘20‘43¢’2(“252 —a,,) + (“42¢3 + B4z¢4) (a0, “452)))’

o5(t) = J

Ag=—(0g(1))*(05(t)) ;> (8, — tx462)2<<%01(t)) 5,8, +S, ((%US(t)>as(t) + (%%(t))%(t))—sl <a7(t) %@(t) +as(t)%os(t))>,

81=(06(1)* + (o5(1))*
8, = (05(t))* + (07(1))%,
Sy = a22642 +0,0,8,0, + (x42822,

Sy=07()0g(t)ay =2 05(t)og(t) oty

_ 05(t)og(t)a, + az06(1)og(t) — 07 (1) o6 (H) a4
a7 a5(1)a3(t) ’

¢ =12 (05(1) 05 (1) = 05 ()05 () gy’ ),
’ (028 — ,8,)* (0 (1)) (05(1))*

5 =1/ (Us(t))zo‘zz + (Us(t))z%z ((‘77(t))2“264 + (‘77(t))20‘452 - (Us(t))2“284 + (Us(t))2“452)
! a,0406(t)0g (1) (05(1)0g(t) e, — 07 (1) () o) '

H, = (05(£))*a,8, + (05(£))*a,8, + (04(1)) @, 8, = (04(1))* ,8,.

17
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4.2.6. Set VI Solutions

12
2= —¢¢2 (Ing),.
1

g = e Pzl (gy(1) cos (0,(1)) +04(t) sin (a,(t)))
+ e¥tB1057203() (6 (1) cos (0,(F)) + 0g(t) sin (0,(t))).

(61)

5. Conclusion

This article investigated the combined damped sinusoidal
oscillation solutions to the (3 + 1)-D variable-coefficient gen-
eralized nonlinear wave equation. The bilinear form of the
equation has been described by means of Hirota derivatives.
The governing equation is translated to nonlinear ODE using
the Cole-Hopf algorithm. Two types of rational periodic
solutions have been constructed, which are bright, singular,
and periodic, damped sinusoidal oscillation solitons in terms
of trigonometric and rational functions. The dynamic fea-
tures of different types of traveling waves are analyzed in
detail through numerical simulation. Meanwhile, the profiles
of the surface for the deduced solutions have been depicted in
2D, density, and 3D for free parameters. From the acquired
results, it can be concluded that the procedures followed in
this analysis can be implemented in a simple and straightfor-
ward manner to create new exact solutions of many other
nonlinear partial differential equations in terms of the Hirota
operator. It is also a very easy-to-use mathematical tool to
solve real-life problems in different areas of engineering
and sciences.
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