
cancers

Article

Fourier Transform Infrared Polarization Contrast Imaging
Recognizes Proteins Degradation in Lungs upon Metastasis
from Breast Cancer

Karolina Chrabaszcz 1,† , Katarzyna Kaminska 1,2,†, Cai Li Song 3, Junko Morikawa 4, Monika Kujdowicz 1,5,
Ewelina Michalczyk 1, Marta Smeda 2, Marta Stojak 2 , Agnieszka Jasztal 2, Sergei G. Kazarian 3,*
and Kamilla Malek 1,*

����������
�������

Citation: Chrabaszcz, K.; Kaminska,

K.; Song, C.L.; Morikawa, J.;

Kujdowicz, M.; Michalczyk, E.;

Smeda, M.; Stojak, M.; Jasztal, A.;

Kazarian, S.G.; et al. Fourier

Transform Infrared Polarization

Contrast Imaging Recognizes

Proteins Degradation in Lungs upon

Metastasis from Breast Cancer.

Cancers 2021, 13, 162. https://doi.

org/10.3390/cancers13020162

Received: 19 November 2020

Accepted: 1 January 2021

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., 30-387 Krakow, Poland;
karolina.chrabaszcz@doctoral.uj.edu.pl (K.C.); katarzyna1.kaminska@uj.edu.pl (K.K.);
monika.kujdowicz@uj.edu.pl (M.K.); ewelina.michalczyk95@gmail.com (E.M.)

2 Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14 St.,
30-384 Krakow, Poland; marta.wojewoda@jcet.eu (M.S.); marta.stojak@jcet.eu (M.S.);
agnieszka.jasztal@jcet.eu (A.J.)

3 Department of Chemical Engineering, Imperial London College, South Kensington Campus,
London SW72AZ, UK; cai.song13@imperial.ac.uk

4 School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
morikawa.j.aa@m.titech.ac.jp

5 Department of Pathomorphology, Medical Faculty, Jagiellonian University Medical College, Grzegorzecka 16 St.,
31-531 Krakow, Poland

* Correspondence: s.kazarian@imperial.ac.uk (S.G.K.); kamilla.malek@uj.edu.pl (K.M.)
† Both authors should be considered as first authors.

Simple Summary: Several lung extracellular matrix (ECM) proteins are involved in the formation of
a metastatic niche in pulmonary metastasis and they accompany the cancer progression. Its gradual
remodeling does not induce compositional changes of its components, but it is related to the re-
distribution of individual proteins, their cross-linking and spatial arrangement within the tissue.
The combination of FTIR and FTIR polarization contrast (PCI) imaging, as rapid, non-destructive,
and label-free techniques, allows for the determination of protein alternations occurring in lungs
that are affected by breast cancer metastasis. Both have the potential to characterize biochemical
changes of the metastatic target, can determine phenotypes of tissue structures, and deliver a novel
spectroscopic marker panel for the recognition of metastasis environment.

Abstract: The current understanding of mechanisms underlying the formation of metastatic tumors
has required multi-parametric methods. The tissue micro-environment in secondary organs is
not easily evaluated due to complex interpretation with existing tools. Here, we demonstrate the
detection of structural modifications in proteins using emerging Fourier Transform Infrared (FTIR)
imaging combined with light polarization. We investigated lungs affected by breast cancer metastasis
in the orthotopic murine model from the pre-metastatic phase, through early micro-metastasis, up
to an advanced phase, in which solid tumors are developed in lung parenchyma. The two IR-light
polarization techniques revealed, for the first time, the orientational ordering of proteins upon the
progression of pulmonary metastasis of breast cancer. Their distribution was complemented by
detailed histological examination. Polarized contrast imaging recognised tissue structures of lungs
and showed deformations in protein scaffolds induced by inflammatory infiltration, fibrosis, and
tumor growth. This effect was recognised by not only changes in absorbance of the spectral bands but
also by the band shifts and the appearance of new signals. Therefore, we proposed this approach as a
useful tool for evaluation of progressive and irreversible molecular changes that occur sequentially
in the metastatic process.
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1. Introduction

Lungs are the primary organ of the respiratory system and due to their strong blood
supply and high oxygen availability they are one of the most common sites of metastasis
from primary breast cancer. The cancer cells retained at a given stage of the cell cycle
adhere to capillary beds, before penetration into the organ parenchyma and then proliferate
and promote angiogenesis within a targeted organ [1]. Metastasis causes extensive changes
in lung tissue and proteome, ranging from remodeling of the extracellular matrix (ECM) to
fibrosis and formation of solid tumors.

The most abundant proteins in the lungs are collagens, mostly type I, III, and IV [2].
Laminin, the main protein of basal membrane, and elastin, a protein occurring in organs
requiring elasticity, are also present in lung tissue in high amounts [3]. All these proteins,
in different ratios, build the lung structures such as bronchi, bronchioles, alveoli, and blood
vessels (Table S1). Several ECM proteins are involved in the formation of a metastatic
niche in pulmonary metastasis of primary breast cancer, and they accompany cancer
progression. Among them, collagens, fibronectin, tenascin C, versican, periostin and
others, are present. Collagens, implicated in modulation of cancer cell activities and fate,
and other lung proteins are degraded by serine proteases and various metalloproteases
(MMPs). An immunochemical study assessed the expression of elastin and MMPs-2,
-4, and -9 in a murine model of pulmonary breast cancer metastasis, that showed the
degradation of elastin is associated with an increased expression of these MMPs in lungs
in the phases of micro- and macro-metastasis [4]. Gradual remodeling of ECM and its high
dynamics do not induce compositional changes of ECM components, but they rather cause
re-distribution of individual proteins, their cross-linking and spatial arrangement within
the tissue. Unfortunately, the formation of new structures in fibers constrains specific
staining of proteins in light and electron microscopy [3]. This issue requires searching
for new label-free tools sensitive to molecular structures of proteins and showing their
distribution in complex ECM-cancer interactions in the lung.

One of the rapid, label-free and non-destructive methods useful for the examination
of the composition and structures of molecules in tissues is Fourier Transform Infrared
spectroscopic imaging (FTIR). FTIR spectroscopy is a technique successfully applied for
the analysis of secondary structures of polypeptides and proteins, including purified
proteins as well as those in biological samples [5–8]. A number of FTIR spectroscopic
reports concerning investigations of collagen and elastin structures in biological samples
were mainly focused on tissues with dominant contribution of these proteins to tissue
composition. For instance, Camacho and co-workers investigated collagen type I and
II as well as proteoglycans in bovine articular cartilage and observed differences in the
localization of amide I and II bands specific for these proteins [8]. Whilst Petibois and others
distinguished collagen type I from type IV after deconvolution of amide bands in FTIR
spectra of ECM in skeletal muscle [9]. The detection of internal elastic lamina and smooth
muscle cells surrounded by elastin and collagen by micro-ATR–FTIR imaging (Attenuated
Total Reflection) has been shown for atherosclerotic lesions in rabbits [10]. The analysis of
the amide I band in the spectra of the lesions indicated disordered conformation of proteins
altered then due to a nitration effect [11]. In turn, Chrabaszcz et al. used large-area FTIR
scanning of lung cross-sections to assess an ECM remodeling degree in lung structures
at early and late phases of pulmonary metastasis of breast carcinoma and suggested that
the amide III region of fibrous proteins is the most sensitive marker to track an effect of
metastasis on lung parenchyma [12].

FTIR polarization contrast imaging (PCI) could be a relevant tool for probing linear
anisotropy of fibrous structures forming extracellular media in tissues [13]. Polarized
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infrared light promotes vibrational excitation of functional groups only when the dipole
change is aligned with the polarization of the incident field [14,15]. A few reports used this
physical property to determine the relationship between mechanical damage of proteins
and aging in tendon and skin due to altered orientation or cleavage of protein fibers.
Parallel (p-) and perpendicular (s-) polarized FTIR spectra of undamaged tendon, mainly
composed of collagen type I, showed significant differences in intensities of amide I and
II bands [14]. This observation was used to identify regions of mechanically damaged
mammalian tendon in which the axial alignment of the fibrils was lost. Polarized FTIR
spectra of a rat tail tendon were also analyzed for the cutaneous chronologic aging in
human skin. In this case, FTIR-PCI imaging indicated that fibers of collagen type I become
parallel to the skin surface in aged skin dermis [16].

In this work we propose the combination of standard and polarized contrast FTIR
spectroscopic imaging for the determination of protein alternations in the lung alongside
the development of pulmonary breast cancer metastasis in an orthotopic mouse model.
We carried out long-term observations to compare changes in the lung parenchyma at the
pre-metastatic stage (week 2) (leukocyte infiltration is mainly recognised in conventional
hematoxylin and eosin (H&E) staining without visible changes in lung morphology), an
early micro-metastasis (week 3) (colocalization of inflammation single neoplastic cells or
their small clusters) up to an advanced phase (week 5) (solid metastases of various sizes
are present in lung parenchyma). Since we showed that standard FITR imaging could be
successfully applied to detect single cancer cells [17], secondary tumors [18], and assess
alternations of lung structures [12], we applied PCI imaging to advance current capabilities
for the detection of early metastasis and its effect on a chemism of ECM.

2. Results

To investigate time-dependent changes in ECM induced by cancer metastasis from
breast to lung, critical for cancer development, we selected tissue cross-sections from
the following phases of the disease development, the pre-metastatic (week 2), micro-
metastatic (week 3), and macrometastasic (week 5) phases, and compared FTIR data with
those obtained for healthy control (HC) (Figures 1–4). FTIR images were collected by
using irradiation of non-polarized, parallel (p-, i.e., 0◦), and perpendicular (s-, i.e., 90◦)
polarized infrared radiation and we captured the same Regions of Interest (ROI) in all cases.
Subsequently, H&E staining, used as a “standard” screening test for histopathological
diagnosis, was performed on the same cross-sections to visualize lung morphology and to
identify what lung structures exhibit variation in the protein composition gathered from
the FTIR images. For the latter, Unsupervised Hierarchical Cluster Analysis (UHCA) was
performed to reduce hyperspectral database and reveal spectral differences. Firstly, FTIR
images constructed for ratios of amide I, II, and III bands show the overall changes in
structure and orientation of proteins (Figure S1) and may reflect an increase in the rate of
cell changes, deterioration of cell function and genome instability. Amide I and II bands
in the region of 1700–1500 cm−1 are assigned to stretches of the C=O group and bends of
the N-H bond in the amide bonding, respectively, and highlight secondary conformations
of proteins and their alternation. In turn, the amide III band (the skeletal C-N and C-C
stretching vibration) has a very specific spectral motif for fibrous proteins, i.e., a triad of
peaks in the 1300–1200 cm−1 region [7]. Standard and PCI IR images displayed in Figure
S1 differ from each other for each case and these differences become more pronounced
when cancer cells infiltrated the lung (weeks 3 and 5), i.e., an increased intensity of amide
I and III bands, with respect to amide II band, is observed in some regions of the tissue
cross-sections. Although ATR FTIR spectra of the most abundant lung proteins, collagens
type I, III, IV and elastin, exhibit distinct spectral profiles in the entire region between
1700 and 900 cm−1, the complex biological matrix of the tissues can hide their features
(Figure S2).
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Figure 1. (A) A H&E micro-photography showing cellular phenotypes of lung parenchyma observed in healthy control and
ROI (green area) imaged spectroscopically (magnification: 20×); (B) a white-field image of the ROI (magnification: 15×);
false-colour UHCA maps for IR images recorded by using non-polarized FTIR imaging (C), 0◦ (D) and 90◦ (E) polarization
contrast imaging. Mean second derivative FTIR spectra extracted from UHCA maps for 0◦ (F,G) and 90◦ (H,I) polarized IR
light. Mean spectra of non-polarized FTIR imaging are collected in Figure S3E,F. The colors of classes correspond to the
colors of spectra.
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Figure 2. (A) A H&E micro-photography (20×) showing cellular phenotypes of lung parenchyma in the pre-metastatic
phase (week 2) and ROI (green area) imaged spectroscopically (magnification: 20×); (B) a white-field image of the ROI
(magnification: 15×); false-colour UHCA maps for IR images recorded by using non-polarized FTIR imaging (C), 0◦ (D)
and 90◦ (E) polarization contrast imaging. Mean second derivative FTIR spectra extracted from UHCA maps for 0◦ (F,G)
and 90◦ (H,I) polarized IR. Mean spectra of non-polarized FTIR imaging are collected in Figure S3G,H. The colors of classes
correspond to the colors of spectra.
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Figure 3. (A) A H&E micro-photography showing cellular phenotypes of lung parenchyma observed in the micro-metastasis
phase (week 3) and ROI (green area) imaged spectroscopically (magnification: 20×); (B) a white-field image of the ROI
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and 90◦ (E) polarization contrast imaging. Mean second derivative FTIR spectra extracted from UHCA maps for 0◦ (F,G)
and 90◦ (H,I) polarized IR light. Mean spectra of non-polarized FTIR imaging are collected in Figure S3I,J. The colors of
classes correspond to the colors of the spectra.
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H&E staining of the lung cross-section of healthy control exhibits the presence of vari-
ous morphological structures typical for lungs such as longitudinal cross-section through
a blood vessel, bronchi, and bronchioles. Bronchioles are sent with ciliated monolayer
epithelium and contain bronchiolar cells (Clary) secreting proteins and glycosaminogly-
cans. A myofibroblasts, individual macrophages, mast cells and numerous blood vessels
in contact with type I pneumocytes and type II pneumocytes are present in healthy con-
trol (Figure 1A). The ROI selected for FTIR imaging includes the pulmonary artery with
erythrocytes, bronchioles and fine-lanced parenchyma with alveoli (Figure 1A,B). UHCA
analysis of the conventional FTIR image differentiated three classes assigned mainly to
bronchioles and walls of blood vessels together (grey class), pulmonary parenchyma with
alveoli (green class), collagen-rich fibrils in the longitudinal cross-section of the venous
vessel wall (red class) (Figure 1C and Figure S3). For the latter, the presence of collagens is
confirmed by FTIR spectrum of neat collagens, in particular in the region below 1350 cm−1

(see Figures S2 and S3F). The non-polarized FTIR spectrum of the red class depicted an
increased absorbance of β-sheet structures (amide I: 1697 and 1634 cm−1) and bands at 1338,
1283, 1238, and 1203 cm−1 attributed to the δ(CH2), δ(CH3), ν(C–N), and δ(N–H) absorp-
tions of collagens, respectively [19]. A broad feature at 1155 cm−1 suggest the dominance
of collagen type I and IV in this class what is congruent with the protein composition of the
vessel wall (Table S1). The remaining structures of the healthy lungs, i.e., walls of vessel
and bronchioles and parenchyma assigned to the grey and green classes, differ between
themselves mainly in the region of amide I and II bands and by the intensity of the carbo-
hydrate band at 1036 cm−1 higher in alveoli than in vessels and bronchioles (Figure S3E,F).
On the contrary to the collagen-rich class, these structures exhibit a high level of α-helices
in their proteins (amide I: 1652 cm−1), and a low contribution of β-sheet structures. A
significant decrease in intensity of the collagen amide III bands and the presence of the
1170 cm−1 band indicate the co-existence of collagens and elastin, (Figures S2C,D and S3F).

Surprisingly, the collagen fibrils observed earlier are not visualized in healthy control
by irradiation of neither parallel nor perpendicular polarized IR light (see Figure 1D–I).
The cluster maps and their mean FTIR spectra clearly show substantial differences in
distribution of classes and chemical features (Figure 1C–I). Hierarchical analysis of the
00 polarization FTIR image mainly indicates the presence of walls of blood vessels and
bronchioles clustered together into the grey class (Figure 1D). Interestingly, the other classes
show the distribution of very minute cells such as the epithelium in alveoli (green class)
mixed with single pixels assigned to basal lamina (pink class) and cytoplasm proteins (aqua
class). The spectral profiles of all classes mainly vary in intensities of the amide I and II
bands while the band positions exhibit the presence of collagens and elastin (Figure 1F,G).
In addition, we observe in Figure S1 a higher amide I: amide II ratio for the middle part of
the walls of vessels and bronchioles than for the other tissue fragment that can indicate
protein fibers oriented parallelly along the wall. Furthermore, conventional and 0-degree
polarized FTIR imaging classify parenchyma, walls of blood vessels and bronchioles
together in contrast to polarized IR light at 90◦ that reveal different distribution of spectral
features (see Figure 1E,H,I). Walls of blood vessels and bronchioles (grey class in Figure
1C,D) are now segregated into bronchiolar and vascular walls (brown class, Figure 1E)
surrounded by endoplasmic reticulum and its cytoplasm (blue class) and accompanied by
ECM and collagen fraction (green class). Additionally, the epithelium that lines the alveoli
and bronchioles were distinguished as an orange class. Perpendicular polarization of
infrared radiation exhibits pronounced spectral differences, i.e., a shift of the amide I band
from 1652 cm−1 to 1655 cm−1 is observed for the blue and orange traces and the increased
intensity of the 1533 cm−1 band appeared in all classes, except the green one (Figure 1H).
The latter also shows the lack of the new amide III band at 1261 cm−1 which is pronounced
for the blue class (Figure 1I). According to a report of Zhang and co-workers, the bands at
1655, 1533, and 1261 cm−1, present in the IR spectrum of the blue class localized around
vessel and bronchiole walls, originate from random scaffolds and cross-linking of collagens
on contrary to aligned protein morphologies in the core of the walls (brown class) [20].
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Other tissue structures revealed by perpendicular IR light very likely possess a blend of
proteins of different orientations.

H&E stain of the ROI selected in the cross-section of the pre-metastatic stage of pul-
monary cancerogenesis (week 2) shows the presence of a longitudinal cross-section through
a blood vessel and bronchioles surrounded by fibrosis (Figure 2A). In this metastatic phase,
a fine-lance and healthy lung parenchyma is mostly replaced by atelectasis, a condition
where the lung does not fill up with enough air, which is manifested by the thickening of
the parenchyma and narrowing of the alveoli lumen as a result of growing inflammatory
infiltrate. Clustering of standard and PCI FTIR images distinguished four classes with
similar distribution through the tissue cross-section (Figure 2C–E). All red classes repre-
sent the collagen-rich regions with the spectral profile described above (Figure 2F–I and
Figure S3G,H). UHCA analysis of the conventional IR image differentiated two classes
in the region labelled as fibrosis, i.e., the red and grey classes. The grey areas surround
the blood vessel and the neighboring bronchiole lumen while the red class is assigned
to histological features showing less cell accumulation with pronounced ECM that ex-
tracts collagens (Figure 2A,C). The FTIR spectra of the two classes shows an intensity
increase in the α-helical amide I band (1652 cm−1) for fibrosis surrounding the venous
blood vessel and bronchiole and a decrease in absorbances specific for amide III bands of
collagens (grey trace) compared to the solid-like fibrotic transformation of parenchyma
(red) (Figure S3G,H). Surprisingly, the spectral features of the red classes observed in the
blood vessel of healthy control and fibrosis in the pre-metastatic phase are very similar, so
we hypothesize that we accidentally found dysfunctional changes in the large vessel of
the 6-week old control mouse or some collagen scaffolds in the large vessels resemble the
spectral signature of fibrosis.

Interestingly, illumination of the lung cross-section with parallel polarized IR light
(0◦) indicates that the collagen-rich IR class (red areas) covers most of the area occupied
by fibrosis while the grey class is present at the edges of this lung tissue transformation
(Figure 2C,F,G). The grey areas differ from the red areas class only by lowering the intensity
of the amide III region, similarly to conventional FTIR spectra. In turn the 90◦ PCI image
shows a high content of collagens across the entire region of fibrosis (Figure 2E,H,I). The
localization of the collagens in the three IR images agree with the physiology of fibrotic
scarring in that these proteins are produced by fibroblasts leading to accumulation of ECM
components due to inflammation typically observed before invasion of cancer cells [21].The
evidence for the structural and spatial distribution of collagen fibers are changes in the
regions of amide I and III bands observed in mean IR spectra of the red classes. Cluster
analysis of conventional and PCI IR images show that atelectasis is spectrally characterised
by three classes (blue, aqua, and orange) where the spectra mainly differ by intensities
of numerous bands in the region of amide I and II bands. The appearance of the amide
II signal at 1542 cm−1 is specific for this deformation of lung parenchyma compared to a
control (Figures 1 and 2).

Colonization of single cancer cells or their clusters in lungs appear around three
weeks of the breast cancer progression in the orthotropic murine model [22]. Our previous
studies on early micro-metastasis phase in this model showed that single cancer cells
or their clusters occupy 0.002–0.12% per imaged tissue area (ca. 5.5 mm2). This makes
their identification difficult for H&E histopathology [12,17]. H&E staining of the chosen
ROI exhibits the presence of blood micro-vessels, bronchi, and bronchioles surrounded
by parenchyma (Figure 3A). Lung parenchyma is open-work and formed by thin-walled
pulmonary alveoli and this fragment of the tissue does not show signs of atelectasis,
inflammation or fibrosis observed in other regions of this lung lobe (data not shown).
So, this ROI, in principle, exhibits histologically features of healthy lung. Conventional
FTIR cluster this ROI into four classes attributed to collagens-rich cells (red) localized in
the bronchiole and vessel walls (green), and parenchyma (blue and grey) (Figure 3C and
Figure S3I,J). Interestingly, both polarizations of IR irradiation images result in similar
distribution of classes, but different than in the conventional IR image (Figure 3C–E). The
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grey classes include the bronchioles and vessel walls while the blue ones are classified
as epithelium. The spectral profiles of grey and blue classes share similarities in both
parallel and perpendicular polarization. In addition, the spectral characteristics of the IR
polarized parenchymal cells in the range of 0◦ and 90◦ differ significantly. Therefore, they
were grouped into two classes of pink and light green (Figure 3F–I). The spectrum for 0◦

polarized light is similar to the corresponding spectrum of parenchyma in healthy control,
except a 3 cm−1 up-shift of the main amide I band (pink and green traces in Figures 2
and 3F,G). Whereas the perpendicularly polarized IR spectrum of parenchyma shows a
further shift of the amide I band from 1655 to 1660 cm−1 and the appearance of the amide
II and III bands at 1533, 1350, and 1330 cm−1. These changes in protein conformations are
accompanied by a strong decrease in intensity of signals at 1155 and 1082 cm−1 attributed to
the carbohydrate moieties in collagens and glycoproteins (light green trace in Figure 3H,I).
This indicates modifications in protein structure from triple-helices and helices into turns
and β-sheets due to degradation, cross-linking and re-orientation of collagen fibers induced
by cancer metastasis. During the cancer progression collagen degradation is enhanced
by pro-inflammatory M1 macrophages recruited into the tissue by the altered activity of
cancer cells [23].

Solid secondary tumor in the lung is fully developed on week 5 after inoculation of
breast cancer cells. An enlarged micro-photography of H&E staining of the investigated
cross-section is displayed in Figure S4. A marked area of tumor is overlapped with fibrotic
tissue since it is impossible to distinguish these structures separately; the tumor arises from
fibrosis without a clear anatomic border. FTIR imaging included this fragment as well as
cross-sections of blood vessel with blood clot, bronchi, and bronchioles (Figure 4A and
Figure S4). In this macro-metastatic phase, normal lung parenchyma is mostly replaced
by atelectasis with visible inflammation and fibrous tissue. Inflammatory infiltration is
histologically recognised by an increased density of the tissue, the lack of air spaces in the
lung, and the presence of pink cytoplasm in parenchymal cells due to the production of
pro-inflammatory proteins.

Clustering of IR spectra obtained in conventional and PCI imaging exhibit distinct
distribution of classes (Figure 4C–E). In each UHCA map, we observe the red class assigned
to the collagen-rich structures that fully overlap with the tumor and fibrosis, but only when
the sample was irradiated with 0◦ polarized IR. The latter suggests the co-existence of
fibrous proteins with the same orientation in these structures. We also observe that cluster-
ing of this image results from intensity variation in the spectral region below 1350 cm−1,
in particular for 1180–1000 cm−1 bands that revealed vibrations of carbohydrate moieties.
These changes could be related with re-building of ECM associated with cross-linking of
fibrous proteins or their decomposition and through alternation of the content of the sugar
groups. For non-polarized and perpendicular infrared light, a high level of collagens is
mainly detected in the longitudinal cross-section of vessel wall, around basement mem-
brane of bronchiole and at the edge of the fibrotic tissue. FTIR spectra gathered with the
conventional imaging approach merges pixels from the area assigned to atelectasis, fibrosis
and tumor (aqua class in Figure 4C) while 90◦ polarized FTIR spectra discriminated these
tissue structures into aqua (fibrosis and tumor) and grey classes (atelectasis) (Figure 4E).
Green and blue classes in the three UHCA maps show the presence of epithelium in
alveoli. FTIR spectra of the perpendicular polarization and non-polarized IR light are
clustered into classes due to changes in intensity in the entire spectral region (Figure 4H,I
and Figure S3K,L). 90◦ polarized PCI segregated fibrosis (aqua) from atelectasis (grey)
based on the increased intensities of amide I and III bands indicating that fibrosis possesses
more α-helical conformations aligned perpendicularly to the tissue surface with some
contribution of collagens than in deformed parenchyma.

3. Discussion

The detailed studies of the tumor micro-environment may increase the knowledge
about potential mechanisms and development and progression of the metastatic dis-
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ease [24]. The lungs are often the first sites of metastasis in nearly one quarter of metastatic
breast cancer patients. Thus, the lungs were chosen as the organ of metastasis to be studied
in our research. Taking into account that all mice developed lung metastasis upon ortho-
topic implantation of a metastatic subline of 4T1 cells (breast cancer cell line derived from
the mammary gland tissue of a mouse BALB/c strain), this cell line was used. Furthermore,
unlike most of the transgenic mouse models of breast cancer metastasis, 4T1 tumor cells
also metastasize to the bone, thereby, resembling human breast cancer metastasis [25]. The
two-polarization FTIR spectroscopic approach was applied to the lung cross-sections to
reveal for the first time the orientational ordering of proteins upon the development of pul-
monary metastasis of breast cancer. Their distribution was complemented by the detailed
histological examination. The protein composition is very complex in the lung tissue, but
the main morphological structures are built of collagens type I, III, IV, and elastin. Their
dominant content is easily detected by FTIR spectroscopy. Imaging with non-polarized in-
frared light, widely used in spectral histopathology, indicated the presence of collagen-rich
spots localized primarily in the walls of vessels and bronchioles, as well as in fibrotic tissue.
FTIR spectra acquired in that way and then clustered by UHCA showed similar signals
where the intensity altered upon metastasis progression. On the other hand, polarized
contrast imaging recognised tissue structures of the lungs and showed deformations in
proteins scaffolds induced by inflammatory infiltration, fibrosis, and tumor growth. This
effect can be recognised by the changes in band intensities, band shifts and the appearance
of new bands, e.g., at ca. 1530 cm−1 in the lung parenchyma in the micro-metastatic phase
and 1260 cm−1 in cytoplasm within bronchioles in control. Both bands were observed in IR
image polarized IR at 90◦. The former could be a marker of cellular modification in the
lung in the phase when breast cancer cells started to cross the vessel barrier.

Table 1 summarized the changes in the ratio of integrated intensities of amide I, II,
and III bands in UHCA classes assigned to morphological structures of lungs that are
considered to reflect fibril orientations along the tissue surface. The formation of the
pre-metastatic niche preparing the lung environment for settling of metastatic cancer
cells through remodeling of ECM was clearly indicated by the amide I to amide II ratio
for parenchyma and epithelium. This ratio gradually increased along with metastasis
development in the spectra of parenchyma whereas it dropped down in epithelium of
the pre-metastatic phase only when the polarization was at 0◦. Whilst the perpendicular
polarization of IR light was used, the amide I: amide II ratio increased already up to week
3 and then it decreased again in fully remodeled alveoli to a value similar for week 2.

Table 1. Correlation of calculated ratios for each stage of cancer progression, standard and polarized FTIR spectroscopic imag-
ing for different morphological elements occurred in cross-sections. Integration range Amide I (1620–1680 cm−1)/Amide II
(1560–1480 cm−1); Amide III (1350–1185 cm−1)/Amide I (1620–1680 cm−1).

TISSUE
STRUCTURE FTIR CONTROL

PRE-
METASTATIC PHASE

(Week 2)

MICRO-
METASTATIC PHASE

(Week 3)

MACRO-
METASTATIC PHASE

(Week 5)

Amide I/Amide II

Parenchyma
ST 2.17 2.30 2.26 2.36
0◦ 2.37 2.37 2.41 2.47

90◦ 2.21 2.40 3.10 2.47

Collagen-rich
structure

ST 2.31
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Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
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dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  
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on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

2.45 *
90◦ - 2.40 • 2.80
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METASTATIC PHASE 

(Week 3) 
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METASTATIC PHASE 

(Week 5) 
Amide I/Amide II 

Parenchyma 
ST 2.17 2.30 2.26 2.36 
0° 2.37 2.37 2.41 2.47 

90° 2.21 2.40 3.10 2.47 

Collagen-rich struc-
ture 

ST 2.31 ⁺ 2.40 ● 2.36 ⁺ 2.39 * 
0° - 2.33 ● 2.34 ▫ 2.45 * 

90° - 2.40 ● 2.80 ▫ 2.48 * 

Epithelium 
ST - 2.18 2.26 2.30 
0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 

Parenchyma 
ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

2.48 *

Epithelium
ST - 2.18 2.26 2.30
0◦ 2.40 2.32 2.41 2.43

90◦ 2.32 2.44 2.80 2.42
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Table 1. Cont.

TISSUE
STRUCTURE FTIR CONTROL

PRE-
METASTATIC PHASE

(Week 2)

MICRO-
METASTATIC PHASE

(Week 3)

MACRO-
METASTATIC PHASE

(Week 5)

Amide III/Amide I

Parenchyma
ST 0.19 0.15 0.18 0.16
0◦ 0.15 0.13 0.19 0.13

90◦ 0.17 0.13 0.19 0.13

Collagen-rich
structure

ST 0.20
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Epithelium 
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⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  
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0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 
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ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

0.17 *
0◦ - 0.15 • 0.14
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Epithelium 
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0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 

Parenchyma 
ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  
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90° 2.21 2.40 3.10 2.47 

Collagen-rich struc-
ture 

ST 2.31 ⁺ 2.40 ● 2.36 ⁺ 2.39 * 
0° - 2.33 ● 2.34 ▫ 2.45 * 

90° - 2.40 ● 2.80 ▫ 2.48 * 

Epithelium 
ST - 2.18 2.26 2.30 
0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 

Parenchyma 
ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

0.18 *

Epithelium
ST - 0.19 0.18 0.18
0◦ 0.16 0.16 0.15 0.13

90◦ 0.14 0.16 0.18 0.14
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Collagen-rich struc-
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ST 2.31 ⁺ 2.40 ● 2.36 ⁺ 2.39 * 
0° - 2.33 ● 2.34 ▫ 2.45 * 

90° - 2.40 ● 2.80 ▫ 2.48 * 

Epithelium 
ST - 2.18 2.26 2.30 
0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 

Parenchyma 
ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

collagens fibers in longitudinal cross-section of vessel and bronchiole wall; • fibrotic tissue;

Cancers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

Table 1. Correlation of calculated ratios for each stage of cancer progression, standard and polarized FTIR spectroscopic 
imaging for different morphological elements occurred in cross-sections. Integration range Amide I (1620–1680 cm−1)/Am-
ide II (1560–1480 cm−1); Amide III (1350–1185 cm−1)/Amide I (1620–1680 cm−1). 

TISSUE  
STRUCTURE 

FTIR CONTROL 
PRE- 

METASTATIC PHASE 
(Week 2) 

MICRO- 
METASTATIC PHASE 

(Week 3) 

MACRO- 
METASTATIC PHASE 

(Week 5) 
Amide I/Amide II 

Parenchyma 
ST 2.17 2.30 2.26 2.36 
0° 2.37 2.37 2.41 2.47 

90° 2.21 2.40 3.10 2.47 

Collagen-rich struc-
ture 

ST 2.31 ⁺ 2.40 ● 2.36 ⁺ 2.39 * 
0° - 2.33 ● 2.34 ▫ 2.45 * 

90° - 2.40 ● 2.80 ▫ 2.48 * 

Epithelium 
ST - 2.18 2.26 2.30 
0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 

Parenchyma 
ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

high collagenous contribution in vessel and
bronchiole wall; * tumor with fibrosis.

The changing ratio of amide III and I bands also exhibited anisotropy under the
polarization conditions for parenchyma and epithelium. This ratio is almost constant
during metastasis, except the micro-metastatic phase. The enhancement of the collagen
triple bands can suggest random alignment collagens when they were secreted due to
signaling between lung fibroblasts.

Infrared light absorption is reliant on the angular orientation of transition moments
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR
radiation [26]. For anisotropic samples the absorption of polarized light varies and de-
pends on its direction, creates an effect of linear dichroism represented by dichroic ratio
(D) is defined as D=A‖(00)/
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Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  
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Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

represent absorbances for parallel and
perpendicular radiation, respectively. Values of this ratio give the insights about the dipole
moment orientation distribution with regards to the orientation axis as well as might be
used for Herman’s orientation function (f) also called in-plane orientation function [27].
The latter describes the degree or extent of orientation of the chain axes (polymers, fibers)
relative to some other axis of interest and is expressed by the equation below:

f =
D− 1
D + 2

2
3cos2α− 1

(1)

where α is an angle between the transition dipole moment and main molecular axis [26].
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 cor-
responding to low- and high-ordered structures. The isotropic character of sample is
indicative by zero.

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D)
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in
Figure 5. These functions are effective to understand the tendency of proteins orientation
and the subtle changes which induce trend of their behaviour, triggered by invading cancer
cells and to define relationship with the cancer metastasis. It is known that the local fibers
alignment promotes cancer cells interactions with ECM [28].

The fibrotic tissue (•), present for each discussed amide, exhibits orientation changes
towards disordered structures of proteins, which are the most prominent for the macro-
metastatic phase, where these fibers surround the cancerous lesions without obvious
specific alignment. In contrast, a degree of disorganization is lower than in vessel and bron-
chiole walls fraction with high collagenous contribution (
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⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

), present in micro-metastasis.
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Table 2. Correlation of calculated dichroic ratio (D) and orientation function (f) for different morphological elements
occurred in cross-sections according to each stage of cancer progression for polarized FTIR spectroscopic imaging.

TISSUE
STRUCTURE FTIR CONTROL

PRE-
METASTATIC PHASE

(Week 2)

MICRO-
METASTATIC PHASE

(Week 3)

MACRO-
METASTATIC PHASE

(Week 5)

Amide I-C = O (1620–1680 cm−1)

Parenchyma D 0.95583 1.07578 1.0432 0.93135
f −0.01494 0.02464 0.01419 −0.02342

Collagen-rich
structure

D - 0.98945 • 0.95724
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⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

0.95734 *
f - −0.00353 • −0.01446
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⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

−0.014425 *

Epithelium D 1.01139 0.96525 0.87455 0.96699
f 0.00378 −0.01172 −0.04364 −0.01112

Amide II-C-N, -N-H (1560–1480 cm−1)

Parenchyma D 1.20903 1.04020 1.34128 0.93093
f 0.06514 0.01322 0.10214 −0.02356

Collagen-rich
structure

D - 1.01434 • 0.98440
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Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  
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f - 0.00476 • −0.00523
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ST - 2.18 2.26 2.30 
0° 2.40 2.32 2.41 2.43 

90° 2.32 2.44 2.80 2.42 
Amide III/Amide I 

Parenchyma 
ST 0.19 0.15 0.18 0.16 
0° 0.15 0.13 0.19 0.13 

90° 0.17 0.13 0.19 0.13 

Collagen-rich struc-
ture 

ST 0.20 ⁺ 0.18 ● 0.19 ⁺ 0.17 * 
0° - 0.15 ● 0.14 ▫ 0.15 * 

90° - 0.14 ● 0.18 ▫ 0.18 * 

Epithelium 
ST - 0.19 0.18 0.18 
0° 0.16 0.16 0.15 0.13 

90° 0.14 0.16 0.18 0.14 
⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

−0.01007 *

Epithelium D 1.01894 1.08911 1.08113 0.96233
f 0.00627 0.02885 0.02633 −0.01272

Amide III (1350–1185 cm−1)

Parenchyma D 1.08269 1.00911 1.02695 0.93659
f 0.02682 0.00303 0.00890 −0.02159

Collagen-rich
structure

D - 1.04158 • 0.62933
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⁺ collagens fibers in longitudinal cross-section of vessel and bronchiole wall; ● fibrotic tissue; ▫ high collagenous contribu-
tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

0.7773 *
f - 0.01367 • −0.14098
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tion in vessel and bronchiole wall; * tumor with fibrosis. 

Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)

where α is an angle between the transition dipole moment and main molecular axis [26]. 
Calculated values of Herman’s orientation function vary in the range of −0.5 to 1 corre-
sponding to low- and high-ordered structures. The isotropic character of sample is indic-
ative by zero.  

Based on integral intensities of amide I, II and III, we calculated dichroic ratio (D) 
and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
Figure 5. These functions are effective to understand the tendency of proteins orientation 
and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

−0.08017 *

Epithelium D 1.24185 1.0060 0.77804 0.88357
f 0.07460 0.0020 −0.07989 −0.04038

• fibrotic tissue;
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Infrared light absorption is reliant on the angular orientation of transition moments 
of individual molecular group vibrations; therefore, it can be used to determine the con-
formational states of molecules with respect to electrical field vectors of polarized IR ra-
diation [26]. For anisotropic samples the absorption of polarized light varies and depends 
on its direction, creates an effect of linear dichroism represented by dichroic ratio (D) is 
defined as D=A‖(0⁰)/AꞱ(90⁰) where A‖ and AꞱ represent absorbances for parallel and perpen-
dicular radiation, respectively. Values of this ratio give the insights about the dipole mo-
ment orientation distribution with regards to the orientation axis as well as might be used 
for Herman’s orientation function (f) also called in-plane orientation function [27]. The 
latter describes the degree or extent of orientation of the chain axes (polymers, fibers) rel-
ative to some other axis of interest and is expressed by the equation below: 𝑓 = 𝐷 − 1𝐷 + 2 23 𝑐𝑜𝑠ଶ 𝛼 − 1  (1)
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and the Herman’s orientation function (f) (Table 2) and summarised their as graphs in 
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and the subtle changes which induce trend of their behaviour, triggered by invading can-
cer cells and to define relationship with the cancer metastasis. It is known that the local 
fibers alignment promotes cancer cells interactions with ECM [28].  

high collagenous contribution in vessel/bronchiole wall; * tumor with fibrosis.

Parameters calculated for amide III bands regard the collagen fibers present in the
lung tissue. Collagens in parenchyma and epithelium form random alignment due to
ECM remodeling, however this process occurs earlier in epithelium and is noticeable in
the micro-metastatic phase. The highest value of the factor f for the amide III band is
determined for fibrotic tissue in the pre-metastatic phase suggesting ordering of collagens
fibers. This is congruent with previous observations showing that collagens with filament-
like structures display the alignment towards cancer cell invasive directions [28]. Therefore,
when affected, reorient towards parallel alignment to promote their migration inside ECM.

Values of Herman’s function for the amide I and II bands suggest the contribution of
proteins other than collagens (Table 2). A close to zero value found for healthy epithelium
indicates the isotropic orientation of its proteins which becomes disordered with the
metastasis development.

This tendency is not observed when the developed tumors are present. Other proteins
assigned to amide II become less oriented in pre metastasis phase and undergo former
reorientation in micro- and become disoriented in macro-metastasis. It might result from
the activity of epithelial cells mediating the actinomyosin contractility involved in fibers
reorganization, when the spheroid cancer cells cause traction forces and provoke anisotropic
orientation [28]. In parenchyma, ordering of polypeptide chains in proteins occurs in the
micro-metastasis phase when the activity of matrix metalloproteinases is pronounced
(Table 2). When the lung is occupied by large metastatic foci, all proteins undergo mis-
organization.
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ECM proteins are extremely important for the formation of metastasis and colonization
in a distant metastatic site [1]. Currently, numerous studies have been conducted on
different functions of proteins representing the tumor’s immediate environment. For
instance, Oskarsson and co-workers have proved that ECM proteins like Tenascin-C (TNC)
and Versican (VCAN) play a critical role during the earliest stage of breast cancer metastasis
to the lungs [29]. In a Malanchi report, periostin (POSTN) was identified as a component
of the ECM and is expressed by fibroblasts in healthy tissue and by stroma of the primary
tumor in the breast. Infiltrating cancer cells induce stromal POSTN expression in the
secondary target organ—the lungs—to initiate colonization [30]. Another study showed
that ECM components may provide a favorable environment for disseminated cancer cells
to interact with other cells. Among them vascular cell adhesion molecule-1 (VCAM-1)
is abnormally expressed in breast cancer cells and binds to α4β1 integrin, which further
interacts with fibronectin. Pulmonary parenchyma containing collagen and elastin fibers
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acts as a favorable environment for homing of breast cancer expressing VCAM-1 [31]. The
investigation of the pre-metastatic niche and tumor microenvironment is fundamental
to understand mechanisms of the cancer development. We believe that application of
Fourier Transform Infrared polarization contrast imaging will contribute to improved
understanding of the process of proteins degradation in lungs upon metastasis from
breast cancer.

4. Materials and Methods
4.1. Sample Preparation and Histological Analysis

Lung tissue samples were possessed from inbred mouse strains BALB/cAnNCrl
(control) (n = 1) and BALB/cAnNCrl (n = 1) within 2, 3, and 5 weeks after orthotopic
inoculation with viable 4T1 tumor cells of metastatic breast cancer. Isolated lungs were
washed in saline and fixed with 4% formalin buffered solution for 48 h. Paraffin-embedded
cross-sections of tissues were cut from the middle of the isolated left lung. Then, 7 µm thick
cross-sections were prepared using a paraffin method on an Accu-Cut® SRM™ 200 Rotary
microtome mounted on CaF2 windows and dewaxed before FTIR imaging. After the
collection of FTIR spectroscopic images, the same regions of interest (ROI) in a cross-section
were imaged with the use of PCI in light polarization of 0 and 90◦. After all, FTIR imaging
measurements, cross-sections were stained with haematoxylin and eosin (H&E) for the
histopathological examination. The examination and photographic documentation of dyed
slides were performed using an Olympus BX53F white-light microscopic equipped with a
DP74 digital camera. All investigations presented in this work conformed to the Guide for
Care and Use of Laboratory Animals published by the US National Institutes of Health. A
local animal research committee approved the experimental procedures used in the present
study (permit no. LKE140/2013).

Protein standards were selected based on the lung tissue ECM composition and
literature [32,33]. Here we studied human collagen type I (CC050, Sigma Aldrich, St. Louis,
MO, USA), human collagen type III (CC054, Sigma Aldrich), human collagen type IV
(CC076, Sigma Aldrich) and elastin from mouse lung (E6402, Sigma Aldrich). All collagens
were solutions of 1 mg/mL purified protein liquids containing 0.5 M acetic acid, except
elastin that was lyophilized powder due to its insolubility.

4.2. Conventional and Polarized Contrast FTIR Spectroscopic Imaging and Data Analysis

For conventional FTIR spectroscopic imaging of lung cross-sections, we used a combi-
nation of an Agilent 670-IR FTIR spectrometer and a 620-IR microscope working in rapid
mode, which allows for the collection of 16,384 spectra from an area of circa 495,616 µm2

within 90 s (Santa Clara, CA, USA). A focal plane array (FPA) detector cooled with liquid
nitrogen was coupled with this equipment. The detector consisted of a matrix of 16,384
pixels, arranged in a 128 × 128 grid format. The collection of IR images was performed
in transmission mode. FTIR spectroscopic imaging used a 15× Cassegrain objective and
condenser optics with numerical aperture (NA) of 0.62 and a projected FPA pixel size of
5.5 µm × 5.5 µm, giving a measured area of ca. 704 µm × 704 µm. All FTIR spectra were
recorded by co-adding of 64 scans and in the range of 3800 to 900 cm−1 with a spectral
resolution of 4 cm−1.

Polarized FTIR spectroscopic images were collected using a Hyperion 3000 FTIR
microscope coupled with Tensor 27 spectrometer (Bruker Optics, Bullerica, MA, USA) at
15× magnification (NA = 0.4) using a rotatable polarizer (Bruker Optics, Bullerica, MA,
USA) placed at the polarizer holder of the microscope for experiments in transmission
mode. A 64 × 64 FPA was used that simultaneously measured an area of 170 × 170 µm2.
Imaging was combined with mapping to obtain FTIR images of the size of the ROIs. The
FTIR spectra were recorded at a spectral resolution of 4 cm−1 with 128 co-added scans.

Protein standards were measured as dried films (collagens) or lyophilizates (elastin)
with the use of Agilent 670-IR spectrometer equipped with an ATR diamond crystal
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(Santa Clara, CA, USA). Spectra were recorded by co-adding of 256 scans in the range from
4000 to 570 cm−1 with a spectral resolution of 4 cm−1.

Pre-processing and chemometric analysis of the acquired FTIR images were performed
using CytoSpec (ver. 2.00.01) [34], MatLab (R2015a, Natick, MA, USA), and Origin 9.1 (ver.
2018b, OriginLab, Northampton, MA, USA) software. Firstly, a quality test was employed
to introduce a threshold level and to eliminate signals with an absorbance lower than
0.2 and greater than 1.2. This operation was performed in the region between 1620 and
1680 cm−1. To remove spectral noise, we executed principal component analysis (PCA)
based noise reduction with 15 principal components (PCs). Resonant Mie scattering EMSC
correction using seven PCs was performed on all spectra [35]. Next, second derivative IR
spectra were calculated with 13 smoothing points according to the Savitzky–Golay protocol.
All spectra were then vector normalized in the 914 to 1770 cm−1 region to account for the
differentiation in the sample thickness. Unsupervised hierarchical cluster analysis (UHCA)
was executed in the spectral region of 1770–970 cm−1 using second derivative FTIR spectra.
Spectral distances were computed as D-values and the individual clusters were extracted
according to Ward’s algorithm. The narrowed spectral region excluding the range above
1800 cm−1 was chosen for UHCA analysis due to the contribution of the trace content of
paraffin to absorbances of the stretching C-H vibrations.

The five ATR-corrected FTIR spectra of pure protein were averaged and then second
derivative spectra were computed with 13 smoothing points according to the Savitzky–
Golay protocol. Next, these spectra were vector normalized in the 4000–900 cm−1 region.
All steps were performed with the use of the OPUS 7.0 program (Bruker Optics, Buller-
ica, MA, USA, Version 7.2.139.1294) and presented as graphs with the use of the Origin
9.1 software.

5. Conclusions

Cancer progression is associated with numerous changes in the morphology of the
affected organs. These changes are based on biochemical processes caused by the activity
of constantly spreading cancer cells. Although classical histopathology followed by bio-
chemical methods is the gold standard in clinical and experimental oncology and have
high sensitivity and specificity in detecting markers, the method is somewhat subjective
when there is a need to discriminate specific abnormalities. Infrared imaging can overcome
this and combine morphological aspects and biochemical compositional information in
tissue sections.

In the presented study we showed that Fourier Transform Infrared polarization con-
trast imaging recognizes proteins degradation in lungs upon metastasis from breast cancer.
This paper shows the potential for the use of conventional and polarized contrast FTIR
spectroscopic imaging, a “spectral histopathology”, to characterize biochemical changes
of the metastatic target. This determines phenotypes of tissue structures and deliver a
novel spectroscopic marker panel for the recognition of the metastatic environment. Thus,
these features can allow for a better understanding of processes like proteins degradation
occurring in diseased tissues during cancer progression. The conventional and polarized
contrast FTIR spectroscopic imaging could provide hints what staining methods are ap-
propriate for specific detection of the metastatic processes. The detailed studies of the
tumor micro-environment can broaden our knowledge about potential mechanisms and
development and progression of the metastatic disease. The results presented in this work
substantially extend the currently existing knowledge of orientational ordering of proteins
upon progression of pulmonary metastasis of breast cancer. Our research shows that deter-
mination of phenotypes of tissue structures and indicated a high potential for the discovery
of new markers, using spectroscopic methods, for the recognition of the metastatic envi-
ronment. Our work demonstrates the possibilities of FTIR spectroscopy and spectroscopic
imaging as rapidly developing physico-chemical methods that are increasingly used in
biomedical research and clinical diagnostics.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/2/162/s1, Figure S1. Integral intensity images for standard and PCI FTIR imaging based
on ratio: I. amide I (1620–1680 cm−1) to amide II (1560–1480 cm−1) bands, II. fibrous proteins
(amide III, 1350–1185 cm−1) to amide I (1620–1680 cm−1) bands. The band ratios differentiate
image contrast based on lung tissue proteins due to ECM remodeling induced by breast cancer
metastasis. Figure S2. Second derivative ATR FTIR spectra of pure collagen I (black), III (red), IV
(blue), and elastin (green) in the regions of 900–1700 cm−1 (A), amide I and II bands (B), amide III
band (C) and stretching and deformation vibrations of the C-O, C-C and C-OH groups specific for
sugar moieties (D). Figure S3. False-colour UHCA maps (A-D) of standard FTIR imaging of lung
cross-sections derived from control, pre- (week 2), micro- (week 3), and macro-metastatic (week 5)
phases of pulmonary metastasis of breast carcinoma. The colour of the classes corresponds to the
colors mean second derivative FTIR spectra (E-L). Figure S4. Enlarged H&E micro-photography of
the lung cross-section from week 5 with a marked region of solid tumor (left). The green ROI (right)
was investigated with FTIR imaging (Figure 4).
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