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The deformed Dirac equation invariant under the κ-Poincaré-Hopf quantum algebra in the context of minimal and scalar
couplings under spin and pseudospin symmetry limits is considered. The κ-deformed Pauli-Dirac Hamiltonian allows us to
study effects of quantum deformation in a class of physical systems, such as a Zeeman-like effect, Aharonov-Bohm effect,
and an anomalous-like contribution to the electron magnetic moment, between others. In our analysis, we consider the
motion of an electron in a uniform magnetic field and interacting with (i) a planar harmonic oscillator and (ii) a linear
potential. We verify that the particular choice of a linear potential induces a Coulomb-type term in the equation of
motion. Expressions for the energy eigenvalues and wave functions are determined taking into account both symmetry
limits. We verify that the energies and wave functions of the particle are modified by the deformation parameter as well
as by the element of spin.

1. Introduction

Quantum deformations based on the κ-Poincaré-Hopf
algebra constitute an important branch of research that
enables us to address problems in condensed matter and
high energy physics through field equations. A pioneer
work presenting these equations can be viewed in Ref.
[1] (see also Refs. [2–6]), where a new real quantum Poin-
caré algebra with a standard real structure is obtained by
contraction of UqðOð3, 2ÞÞ. The resulting algebra of this
contraction is a standard real Hopf algebra that depends
on a dimension-full parameter κ instead of the real defor-
mation parameter q. This algebra is defined by the follow-
ing commutation relations:

pν, pμ
h i

= 0, μ, ν = 0, 1, 2, 3,

~Mi, pμ
h i

= 1 − δ0μ
� �

iεijkpk,  i, j = 1, 2, 3,

Li, pμ
h i

= i pi½ �δ0μ δijε
−1 sinh εp0ð Þ� �1−δ0μ ,

~Mi, ~Mj

� �
= iεijk ~Mk,

~Mi, Lj

� �
= iεijkLk,

Li, Lj

� �
= −iεijk ~Mk cosh εp0ð Þ − ε2

4 pkpl ~Ml

� �
,

ð1Þ

where ε is defined by
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ε = κ−1 = lim
R→∞

R ln qð Þ, ð2Þ

with R is being the de Sitter curvature and pμ = ðp0, pÞ are
the κ-deformed generators for energy and momenta. In
the above commutation relations, ~Mi and Li represent the
spatial rotations and deformed boost generators, respec-
tively. The coalgebra and antipode for the κ-deformed
Poincaré algebra were established in Ref. [7] and have
the following representation:

Δ ~Mi = ~Mi ⊗ I + I ⊗ ~Mi,
Δp0 = p0 ⊗ I + I ⊗ p0,
Δpi = pi ⊗ e 1/2ð Þεp0 + e− 1/2ð Þεp0 ⊗ pi,

ΔLi = Li ⊗ e 1/2ð Þεp0 + e− 1/2ð Þεp0 ⊗ Li

+ 1
2 εεijk pj ⊗ ~Mke

1/2ð Þεp0 + e− 1/2ð Þεp0
j

~M ⊗ pk
h i

,

S pμ
� 	

= −pμ,
S ~Mi

� �
= − ~Mi,

S Lið Þ = −Li +
3εi
2 pi,

ð3Þ

where I is the identity operator. The deformed Casimir
operators for the κ-Poincaré algebra have the following
representation:

C1 =
2
ε
sinh εp0ð Þ

� �2
− pipi,

C2 = cosh εp0ð Þ − ε2

4 pipi

� �
W2

0 −WiWi,
ð4Þ

where

W0 = pi ~Mi,

Wi =
1
ε
sinh εp0ð Þ ~Mi + εijkpjpk:

ð5Þ

With these definitions in hand, we write

P μ = pμ

Mi = ~Mi +mi,

L i = Li + e− 1/2ð Þεp0 li −
1
2 εεijkmjpk,

mi =
1
4 iεijkγjγk,

li = −
1
2 iγ0γi:

ð6Þ

The κ-deformed Dirac operator derived from the
above algebra is found to be

D = −e− 1/2ð Þεp0γipi +
1
ε
γ0 sinh εp0ð Þ − 1

2 εγ0pipi ð7Þ

and satisfies the following relations:

D,P μ

� �
= D,Mi½ � = D,L i½ � = 0: ð8Þ

The square of operator (7) can be written in terms of
the invariants C1 and C2 as

D2 = C1 1 + 1
4 ε

2C1


 �
, ð9Þ

or

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 1 + 1

4 ε
2C1


 �s
= −

4
3C2: ð10Þ

Since C1 =M2, we can write

D =M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1

4 ε
2M2


 �s
: ð11Þ

In this way, the Dirac equation can be written as

Dψ −M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1

4 ε
2M2

r
ψ = 0: ð12Þ

For more details on the derivation of equation (12), see
[3], for example. The algebraic structure of the κ-deformed
Poincaré algebra has been widely investigated intensively
and has become a theoretical field of increasing interest
[5, 6, 8–25]. Through the field equations from the κ-Poin-
caré algebra (κ-Dirac equation [3, 4, 26]), we can study the
physical implications of the quantum deformation parameter
κ in relativistic and nonrelativistic quantum systems. In this
context, we highlight the study of relativistic Landau levels
[22], the Aharonov-Bohm effect taking into account spin
effects [21], the Dirac oscillator [27, 28], and the integer quan-
tum Hall effect [29].

When we want to study the relativistic quantum dynam-
ics of particles with spin, it is desirable to consider the pres-
ence of external fields, which include the vector and scalar
fields. The inclusion of vector and scalar potentials in the
Dirac equation reveals interesting properties of symmetries
in nuclear theory. The first contributions in this subject
revealed the existence of SUð2Þ symmetries, which are known
in the literature as pseudospin and spin symmetries [30, 31].
Some investigations have been made in this scenario in order
to give a meaning to these symmetries. However, it was only
in a work by Ginocchio that pseudospin symmetry was
revealed. He verified that pseudospin symmetry in nuclei
could arise from nucleons moving in a relativistic mean field,
which has an attractive scalar and repulsive vector potential
nearly equal in magnitude [32] (for a more detailed descrip-
tion, see Ref. [33]). Spin and pseudospin symmetries in the
Dirac equation have been studied under different aspects in
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recent years (see Refs. [34, 35]). Some studies have been
developed taking into account the exact spin and pseudospin
symmetry limits to study the relativistic dynamics of physical
systems interacting with a class of potentials [36–43].

The present work is proposed to investigate the κ
-deformed Dirac equation derived in Ref. [4] in the context
of minimal and scalar couplings under spin and pseudospin
symmetry limits. The structure of the paper is as follows: In
Section 2, we present the κ-deformed Dirac equation with
couplings from which we derive the κ-deformed Pauli-
Dirac equation, by using the usual procedure that consists
of squaring the κ-deformed Dirac equation. In Section 3,
we consider the equation of Pauli and establish the spin
and pseudospin symmetry limits. As an application, we con-
sider the particle interacting with a uniform magnetic field in
the z-direction in two different physical situations: (i) particle
interacting with a harmonic oscillator and (ii) particle inter-
acting with a linear potential. We obtain expressions for the
energy eigenvalues and wave functions in both limits. In
Section 4, we present our comments and conclusions.

2. The κ-Deformed Dirac Equation with
Couplings

In this section, we introduce the minimal and scalar substitu-
tions into κ-deformed Dirac equation (12). Before doing this,
let us write it in a more convenient way to be treated. This can
be accomplished by multiplying the left of equation (12) by
e−ð1/2Þεp0 and retaining terms up to OðεÞ. The resulting equa-
tion is found to be [3, 4]

γ0p0 − γipið Þ + 1
2 ε γ0 p20 − pipi

� �
−Mp0

� � �
ψ =Mψ: ð13Þ

Deformed Dirac equation (13) is invariant under the κ
-deformed Poincaré quantum algebra. Manipulating this
equation and using the properties of the γ Dirac matrices
and then rearranging the terms, it is possible to write it in
the Hamiltonian form, ðH − EÞψ = 0, where H is the κ
-deformed Dirac Hamiltonian and E are the energy eigen-
values. After identifying p0 =H0 = E, with H0 = γ0γipi + γ0
M, we can iterate equation (13). This development yields to

Eψ = γ0γipi + γ0M −
ε

2 γ0γipi + γ0Mð Þ2 − pipi
� �

+ ε

2 γ0M γ0γipi + γ0Mð Þ½ �ψ,
ð14Þ

where we have discarded the terms of order equal and supe-
rior to ε2 on the iterative replacements of the energy p0. The
interactions can be introduced through the following pre-
scriptions [44]:

pi ⟶ pi − eAi, ð15Þ

E⟶ E −V rð Þ, ð16Þ

M⟶M + S rð Þ, ð17Þ

where VðrÞ is the electric potential, Ai is the vector poten-
tial, and SðrÞ is the scalar potential. It is known from rel-
ativistic quantum mechanics that for vector coupling the
potential couples to the charge (which is different for par-
ticles and antiparticles) while for scalar coupling the
potential couples to the mass (which is equal for both par-
ticles and antiparticles).

As mentioned in Ref. [4], the couplings ((15), (16),
and (17)) are quite satisfactory from the point of view of
the κ-Poincaré-Hopf algebra. Indeed, there are no operator
ordering problems after the gauging that would require
symmetrization in equation (13). Using these couplings,
we obtain the following expression:

γ0γi pi − eAið Þ + γ0 M + S rð Þð Þ½ �ψ
−
1
2 ε γ0γi pi − eAið Þ + γ0 M + S rð Þð Þ½ �2� �

ψ

+ 1
2 ε M + S rð Þð Þ γi pi − eAið Þ + M + S rð Þð Þ½ �ψ

+ 1
2 ε pi − eAið Þ2ψ = E −V rð Þð Þψ:

ð18Þ

Since we are interested in planar dynamics, i.e., when both
pz and z as well as the third directions of the fields involved
are zero, we choose the following representation for the
gamma matrices in terms of the Pauli’s matrices [45]:

γ0 = σ3,
α1 = γ0γ1 = σ1,
α2 = γ0γ2 = sσ2,

ð19Þ

where parameter s, which has a value of twice the spin value,
can be introduced to characterizing the two spin states, with
s = +1 for spin up and s = −1 for spin down. The matrices σi
ði = 1, 2, 3Þ satisfy the properties

σ2i = I,
σi, σj

� �
= 2iεijkσk,

σi, σj

� �
= 2δij,

σiσj = iεijkσk + δij,
σiσkσl = iεiklI + δikσl + δklσi:

ð20Þ

Using the representation and the properties of the Pauli’s
matrices above, the κ-deformed Dirac equation including the
interactions can be written as

α · p − eAð Þ + γ0 M + S rð Þð Þ½ �ψ − E −V rð Þ½ �ψ
+ ε

2 es σ · Bð Þψ + γ0 α · pð ÞS rð Þð Þ½ �ψ

+ ε

2 Mγ0 α · pð Þ + γ0S rð Þ α · pð Þψ − γ0e α ·Að ÞMψ½ �

−
ε

2 γ0e α ·Að ÞS rð Þψ½ � = 0,

ð21Þ

where the magnetic field B emerges when we use the relation
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iεijkσk pi − eAið Þ pj − eAj

� 	
ψ = −sσkBkψ: ð22Þ

Let us now determine the Dirac equation in its qua-
dratic form. This can be accomplished by applying the
matrix operator [46, 47]

α · p − eAð Þ + γ0 M + S rð Þð Þ + E − V rð Þ
+ ε

2 γ0S rð Þ α · pð Þ + es σ · Bð Þ + γ0 α · pð ÞS rð Þð Þ½ �

+ ε

2 Mγ0 α · pð Þ − γ0e α ·Að ÞM − γ0e α ·Að ÞS rð Þ½ �
ð23Þ

in equation (21). In this procedure, we follow a similar
algebra and the same mathematical properties of the parame-
ters and variables involved on the deduction of equation (21).
The result is the κ-deformed Dirac-Pauli equation

p − eAð Þ2ψ + α · pV rð Þ½ �ψ − γ0α · pS rð Þ½ �ψ
+ M + S rð Þ½ �2ψ − E −V rð Þ½ �2ψ − esσzBψ

−
ε

2 γ0 p2S rð Þ� �
+ γ0 α · pð ÞS rð Þ½ � α · pð Þ½ �� �

ψ

+ ε

2 2isγ0 σ · pS rð Þð Þ × p½ � − 2iseσ · pS rð Þð Þ ×A½ �f gψ

+ ε

2 eγ0 α · pð ÞS rð Þ½ � α ·Að Þ½ � − S rð Þ α · pð ÞS rð Þ½ �f gψ

+ ε

2 2MesB + 2S rð ÞesB −M α · pð ÞS rð Þ½ �f gψ

+ ε

2 Mγ0 α · pð ÞV rð Þ½ � + γ0S rð Þ α · pð ÞV rð Þ½ �f gψ = 0:

ð24Þ

It can be easily verified in equation (24) that after consid-
ering ε = 0, the resulting equation is the one well known in the
literature (see, for example, Ref. [48]). In order to apply equa-
tion (24) to a given physical system, we need to choose a rep-
resentation for the vector potential A and the scalar potentials
SðrÞ and VðrÞ. For some particular choices of these quantities,
we can study the physical implications of quantum deforma-
tion on the properties of various physical systems of interest.

For the field configuration, we consider a constant mag-
netic field along the z-direction (in cylindrical coordinates),
B = Bẑ, which is obtained from the vector potential (in the
Landau gauge) [49],

A = Br
2 bφ: ð25Þ

In this configuration, equation (24) reads

X + ε

2Y = 0, ð26Þ

with

X = −
∂2ψ
∂r2

−
1
r
∂ψ
∂r

−
1
r2
∂2ψ
∂φ2 + ieB

∂ψ
∂φ

+ 1
4 e

2B2r2ψ

+ M + S rð Þ½ �2ψ − E − V rð Þ½ �2ψ − esσzBψ

+ i
∂S rð Þ
∂r

� �
γ0αrψ − i

∂V rð Þ
∂r

� �
αrψ,

Y = γ0
∂2S rð Þ
∂r2

+ 1
r
∂S rð Þ
∂r

" #
ψ − γ0

∂S rð Þ
∂r

� �
∂ψ
∂r

− is 1
r
∂S rð Þ
∂r

� �
∂ψ
∂φ

− 2is 1
r
∂S rð Þ
∂r

� �
∂ψ
∂φ

− iS rð Þγr
∂V rð Þ
∂r

� �
ψ + iS rð Þαr

∂S rð Þ
∂r

� �
ψ

+ es
∂S rð Þ
∂r

� �
Br
2 ψ − 2es ∂S rð Þ

∂r

� �
Br
2 ψ

− iMγr
∂V rð Þ
∂r

� �
ψ + iMαr

∂S rð Þ
∂r

� �
ψ

+ 2MesBψ + 2S rð ÞesBψ,

ð27Þ

where the matrices (19) are now given in cylindrical coordi-
nates, γr = iσφ, γφ = −isσr , with [48]

αr = γ0γr =
0 e−isφ

eisφ 0

 !
,

αφ = γ0γφ =
0 −ie−isφ

ieisφ 0

 !
,

γ0 = σz =
1 0
0 −1

 !
:

ð28Þ

We will attribute expressions to functions VðrÞ and SðrÞ
in equation (26) in the next section, when we treat the anal-
ysis of spin and pseudospin symmetries. We will argue after
that only some particular choices for these functions will lead
to a differential equation that admits an exact solution.

3. Symmetry Limits

To implement the spin and pseudospin symmetry limits, we
make in equation (26) the requirement that SðrÞ = ±VðrÞ,
where the plus (minus) signal refers to spin (pseudospin)
symmetry, respectively [32]. Next, by using ψ = ðψ+, ψ−ÞT ,
the first and second lines in equation (26) can be written in
a simple form, which allows us to solve them separately. Fur-
thermore, as mentioned above, we need to choose a represen-
tation for the radial function VðrÞ. We give a representation
in terms of cylindrically symmetric scalar potentials which
lead to results well-known in the literature.
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3.1. Particle Interacting with a Harmonic Oscillator. It is
well known that the harmonic oscillator can be used to
describe a large number of physical systems. The interest
in this issue appears in physical systems at an atomic scale
and extends to high energy physics. It appears, for
instance, as the interaction between atoms in the elastic
crystal [50–52], as the effective potential acting on elec-
trons moving in a uniform magnetic field (Landau levels)
[49, 53–57] and in the quantization of the electromagnetic
field [58]. The potential of the harmonic oscillator is
included into equation (26) by making VðrÞ = ±SðrÞ = ar2,
where a is a constant. One can check that the spin sym-
metry is sufficient to decouple the radial equation that
comes from the upper spinor component while the pseu-
dospin symmetry decouples the radial equation that comes
from the lower component of the spinor. Thus, by adopt-
ing solutions of the form

ψ± =
〠
m

f + rð Þeimφ

i〠
m

f − rð Þei m+sð Þφ

0BB@
1CCA, ð29Þ

we arrive at radial equations

d2 f ± rð Þ
dr2

+ 1
r
+ εar


 �
df ± rð Þ
dr

−
m±ð Þ2
r2

f ± rð Þ

− Ω±� �2r2 f + rð Þ + k± f + rð Þ = 0,
ð30Þ

where k+ = E2 −M2 + 2ðm + sÞω − εð2a + 3sma + 2MωsÞ,
k− = E2 −M2 + 2ωðm + sÞ + 2ωs − ε½2a − 3saðm + sÞ+ 2Mωs�,
½Ω+�2 = ω2 + 2ðM + EÞa − εωsa, ½Ω−�2 = ω2 + 2ðE −MÞa − ε
ωsa, ω = eB/2, m+ =m, and m− =m + s. It is convenient
to write equation (30) in a known canonical form. This
can be accomplished using f ±ðrÞ as

f ± ρð Þ = e− 1/2ð Þ κ±+1ð Þρρ 1/2ð Þ m±j jF± ρð Þ, ρ =Ω±r2, ð31Þ

where κ± = εa/2Ω±, which leads to the equation

ρ
d2F±
dρ2

+ 1 + m±�� �� − ρ
� � dF±

dρ

−
1
2 1 + m±�� �� + κ±
� �

−
k±

4Ω±

� �
F± = 0:

ð32Þ

Equation (32) is of the confluent hypergeometric equa-
tion type, and its solution is given in terms of the Kum-
mer functions. In this manner, the general solution for
equation (32) is given by [59]

f ± ρð Þ = c1 e
− 1/2ð Þ 1+κ±ð Þρρ 1/2ð Þ m±j j

×M
1
2 1 + m±�� �� + κ±
� �

−
k±

4Ω± , 1 + m±�� ��, ρ
 �
+ c2 e

− 1/2ð Þ 1+κ±ð Þρρ− 1/2ð Þ m±j j

×M
1
2 1 − m±�� �� + κ±
� �

−
k±

4Ω± , 1 − m±�� ��, ρ
 �
,

ð33Þ

where M are the Kummer functions. In particular, when
ð1 + jm±j + κ±Þ/2 − k±/4Ω± = −n, with n = 0, 1, 2,⋯, the
function M becomes a polynomial in ρ of degree not
exceeding n. From this condition, we extract the energies
for the spin and pseudospin symmetry limits, given,
respectively, by

E2 −M2 = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + 2 M + Eð Þa − εωsa

p
2n + mj j + 1ð Þ

+ ε 3a + 3sma + 2ωMsð Þ − 2ω m + sð Þ,
ð34Þ

E2 −M2 = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + 2 E −Mð Þa + εωsa

p
2n + 1 + m + sj jð Þ

− 2ω m + sð Þ − 2ωs − ε a − 3sa m + sð Þ + 2Mωs½ �:
ð35Þ

Equations (34) and (35) are, respectively, the particle
and antiparticle energies in the context of quantum defor-
mation, and they can be read as a relativistic generaliza-
tion of the Landau levels. It must be emphasized that,
since ε and a are positive, the quantum deformation
affects the separation of the energy levels of the system.
This feature, however, should not depend on the value of
the spin projection parameter s. Figure 1 shows energy
profile (34) as a function of the frequency ω for some
values of the quantum number m. In Figure 1(a), we plot-
ted for s = 1 and in Figure 1(b) for s = −1. In this analysis
as well as for the others, we use ε = 10−7 [18, 29]. For this
value, the effects of quantum deformation become more
evident. We clearly see that both particle and antiparticle
belong to the same energy spectrum. However, in
Figure 1(b), we find that the antiparticle energy is not
defined in the frequency ranges 0 < ω < 1:37 (for m = 0)
and 0 < ω < 2 (for m = −1). These same characteristics are
also present in the energy profile of equation (35) as
shown in Figure 2. However, in Figure 2(b), the energies
are not defined in the frequency ranges 0 < ω < 3:35 (for
m = −1), 0 < ω < 3:1 (for m = −1), and 0 < ω < 2:65 (for m
= 1). The appearance of such regions characterizing the
absence of energy eigenvalues is due to the quantum
deformation effects present in the model. On the other
hand, when we compare the energy (34) (spin symmetry
case) with the energy (7) of Ref. [28], we observe the
absence of the interaction term between the Dirac oscilla-
tor and the angular momentum. Here, the frequency ω
comes from the gauge field (25), which couples with the
spin of the particle. Although these spectra are similar,
physically, they are different. In fact, when ε = 0, we obtain
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the energy eigenvalues of Ref. [48] (after removing the
magnetic flux parameter), which shows the consistency
of the model in question. In particular, when a and ε
are null, we obtain

E2 −M2 = 2ω 2n + 1 + mj j −m − s½ �,
E2 −M2 = 2ω 2n + 1 + m + sj j − m + sð Þ − s½ �,

ð36Þ

which are the usual relativistic Landau levels with the
inclusion of the element of spin.

3.2. Particle Interacting with a Linear Potential. Let us con-
sider the case where the particle interacts with a linear
potential, br. As discussed above, linear interactions are
included in the relativistic motion equations through the
quadripotential Aμ. In the case of the Dirac equation,
depending on the configuration of external potentials
involved, it can be solved exactly. An example of an exactly
soluble model described by a linear interaction in relativis-
tic quantum mechanics is the Dirac oscillator [60]. It is
known that the Hamiltonian of the Dirac oscillator
describes the interaction of a neutral particle with an elec-
tric field via an anomalous magnetic coupling [61]. In the
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Figure 2: Illustration of the energy eigenvalues in the pseudospin symmetry limit (Eq. (35)) as a function of the parameter ω for (a) s = 1 and
(b) s = −1. We use units such as M = 1, n = 1, a = 1 and an upper bound ε = 10−7.
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Figure 1: Illustration of the energy eigenvalues in the spin symmetry limit (equation (34)) as a function of the parameter ω for (a) s = 1 and (b)
s = −1. We use units such as M = 1, n = 1, a = 1, and an upper bound ε = 10−7.
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context of confinement of quarks in mesons and baryons,
it is well established that electrostatic linear potentials
lead to the occurrence of the Klein paradox and particles
cannot be confined [62]. To establish such confinement,
we must invoke the scalar substitution (17). In this case,
we make VðrÞ = ±SðrÞ = br (where b is a constant) in
equation (26) to the limits of spin and pseudospin sym-
metries and proceed as before. The resulting equation is
given by

d2

dr2
+ 1

r
+ εb

2


 �
d
dr

−
m±ð Þ2
r2

− ω2r2 − μ±r

" #
f ± rð Þ

−
k±

r
− l±


 �
f ± rð Þ = 0,

ð37Þ

with m+ =m, m− =m + s, μ+ = 2ðE +MÞb + 3εωbs/2, μ− =
2ðE −MÞb − 3εωbs/2, k+ = εbð1 + 3smÞ/2, k− = εb½1 − 3sðm
+ sÞ�/2, l+ = E2 −M2 + 2ωðm + sÞ − 2Mεωs, and l− = E2 −
M2 + 2ωðm + sÞ + 2ωsð1 − εMÞ. In equation (37), the +ð−Þ
signs refer to spin and pseudospin symmetries, respectively.
By performing the variable change, x = ffiffiffiffi

ω
p

r, equation (37)
assumes the form

d2

dx2
+ 1

x
+ κ

2


 �
d
dx

−
m±ð Þ2
x2

− x2 − a±Lx

" #
f ± xð Þ

−
a±C
x

−
l±

ω


 �
f ± xð Þ = 0,

ð38Þ

where we have defined the parameters κ = εb/ ffiffiffiffi
ω

p
, a±L = μ±/ωffiffiffiffi

ω
p

, and a±C = k±/ ffiffiffiffi
ω

p
. Note that the choice VðrÞ = br induces

a Coulomb-like interaction in the resulting deformed sector
of the eigenvalue equation. The origin of this Coulomb poten-
tial is due purely to the quantum deformation and boundary
symmetries involved.

Equation (38) is of the Heun equation type, which is a
homogeneous, linear, second-order, differential equation
defined in the complex plane [63]. This equation can be put
into its canonical form using the solution

f ± xð Þ = x m±j je− 1/2ð Þx2e− 1/2ð Þ a +/Lð Þ+ 1/2ð Þκð Þxy± xð Þ, ð39Þ

where y± satisfies the biconfluent Heun differential equation

y±″ +
α± + 1
x

− 2x − β±

 �

y±′ + γ± − α± − 2
� �

y±

−
1
2x β± α± + 1

� �
+ δ±

� �
y± = 0,

ð40Þ

with α± = 2jm±j, β± = a±L , γ
± = ðβ±Þ2/4 + l±/ω, and δ± = κ/2

+ 2a±C . Equation (40) has a regular singularity at x = 0 and
an irregular singularity at ∞ of rank 2. Usually, the solution
of this equation is given in terms of two linearly independent
solutions as

y± xð Þ =N α±, β±, γ±, δ± ; x
� �

+ x−α
±
N −α±, β±, γ±, δ± ; x
� �

,
ð41Þ

where (assuming that α± is not a negative integer)

N α±, β±, γ±, δ± ; x
� �

= 〠
∞

q=0

A±
q α±, β±, γ±, δ±
� �
1 + α±ð Þq

xq

q!
ð42Þ

are the Heun functions. After the insertion of this solution
into equation (40), we find (q ≥ 0)

A0 = 1, ð43Þ

A±
1 =

1
2 δ± + β± 1 + α±

� �� �
, ð44Þ

A±
q+2 = q + 1ð Þβ± + 1

2 δ± + β± 1 + α±
� �� � �

A±
q+1

− q + 1ð Þ q + 1 + α±
� �

γ± − α± − 2 − 2q
� �

A±
q ,

ð45Þ

where

1 + α±
� �

q
= Γ q + α± + 1ð Þ

Γ α± + 1ð Þ , q = 0, 1, 2, 3,⋯: ð46Þ

From the recursion relation (45), the function Nð
α±, β±, γ±, δ± ; xÞ becomes a polynomial of degree n if
and only if the two following conditions are imposed
[63]:

γ± − α± − 2 = 2n, n = 0, 1, 2,⋯, ð47Þ

A±
n+1 = 0, ð48Þ

where n is a positive integer. In this case, the ðn + 1Þth
coefficient in the series expansion is a polynomial of
degree n in δ±. When δ± is a root of this polynomial,
the ðn + 1Þth and subsequent coefficients cancel and the
series truncates, resulting in a polynomial form of degree
n for Nðα±, β±, γ±, δ± ; xÞ. From condition (47), we extract
the energies at the spin and pseudosymmetry limits, given,
respectively, by

E2
nm −M2 = 2ω n + mj j + 1ð Þ − b2

ω2 Enm +Mð Þ2

−
3b2
2ω Enm +Mð Þεs + 2ω εMs − m + sð Þ½ �,

E2
nm −M2 = 2ω n + m + sj j + 1ð Þ − b2

ω2 Enm −Mð Þ2

+ 3b2
2ω Enm −Mð Þεs − 2ω s 1 − εMð Þ + m + sð Þ½ �:

ð49Þ

The energy of a physical system must be a function
involving all the parameters present in the equation of
motion. In equation (49), the parameter a±C is absent. How-
ever, it can be restored using condition (48) from which we
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obtain a relation between such parameter and the fre-
quency of the system. For each value of n fixed, we have
a self-energy and its corresponding wave function. Let us
consider solution (42) up to second order in x of the
expansion,

N α±, β±, γ±, δ± ; x
� �

= A0
1 + α±ð Þ0

+ A±
1

1 + α±ð Þ1
x + A±

2
1 + α±ð Þ2

x2

2! +⋯:

ð50Þ

If we truncate the series in a term of order xn, the
resulting finite series is related, via solution (39), to the
energy level En. Thus, the physical quantity that we can
associate most closely with the series (50) truncated in
the term xn is the energy En of the particle with the wave
function (39). In fact, it is necessary that the series (50)
becomes an n-degree polynomial for the system to admit
bound states. Thus, by using relation (45) and equations
(43) and (44), the coefficient above A±

2 can be determined.
If we want to truncate solution (50) in x, we must impose
that A±

1 = 0 through condition (48); when we truncate in
x2, we make A±

2 = 0, and so on. For each of these cases,
we can establish appropriate constraints between condi-
tions (47) and (48). Since equation (49) is of the relativis-
tic Landau level type, we prefer to fix the frequency ω in
order to obtain an expression for the energies correspond-
ing to each value of n [41, 64–70]. Since it is done for
both spin and pseudospin symmetries, we also label the
frequency ω as ω±

n , with the subscript n characterizing
the values to be fixed. After obtaining ω±

n and replacing
them in equation (49), we will have expressions for the
energies involving the quantities α±, β±, γ±, and δ±, which
contains the coupling constant a±C , the mass of the particle
M, and the quantum angular momentum number m±.
Thus, for A±

1 = 0, it means that we are investigating the
particular solution for n = 0. In this case, from equation
(44), we have

1
2 δ± + β± ~m±� �

= 0, ð51Þ

where ~m± = 1 + α±. Solving (51) for ω±
0 , we get the relations

ω+
0 = −

2 E+
0m +Mð Þ 1 + 2 mj jð Þ

ε 3s mj j +mð Þ + 3/2 s + 1ð Þ½ � ,

ω−
0 =

2 E−
0m −Mð Þ 1 + 2 m + sj jð Þ

ε 3s m + sj j +m + sð Þ + 3/2ð Þ s − 1ð Þ½ � :
ð52Þ

Proceeding in a similar way to A±
2 = 0, we find the follow-

ing third-degree polynomial in ω±
1 (n = 1):

A± ω±
1

� �3 +B± ω±
1

� �2 +C± ω±
1

� �
+D± = 0, ð53Þ

with

A+ = 2 1 + 2 mj jð Þ,
A− = 2 1 + 2 m + sj jð Þ,
B+ =B− = 0,

C+ = −
3
2 εb

2 E+
1m +Mð Þ 2 mj j + 1ð Þs + C+½ �,

C− = 3
2 εb

2 E−
1m −Mð Þ s 2 m + sj j + 1ð Þ + C−½ �,

D+ = −b2 E+
1m +Mð Þ2 1 + 2 mj jð Þ 3 + 2 mj jð Þ,

D− = −b2 E−
1m −Mð Þ2 1 + 2 m + sj jð Þ 3 + 2 m + sj jð Þ,

ð54Þ

where C+ = 2ð1 + jmjÞð2sjmj + 2ms + s + 1Þ and C− = 2ðjm +
sj + 1Þð2sðjm + sj +mÞ + s + 1Þ. Equation (53) has only one
real root. For each specific frequency,ω±

0 andω
±
1 , we can deter-

mine the energies E±
0m and E±

1m by the following expressions:

E+
0mð Þ2 −M2 = 2ω+

0 mj j + 1ð Þ − b2

ω+
0ð Þ2 E+

0m +Mð Þ2

−
3b2
2ω+

0m
E+
0 +Mð Þεs + 2ω+

0 εMs − m + sð Þ½ �,

ð55Þ

E−
0mð Þ2 −M2 = 2ω−

0 m + sj j + 1ð Þ − b2

ω−
0ð Þ2 E−

0m −Mð Þ2

+ 3b2
2ω−

0
E−
0m −Mð Þεs

− 2ω−
0 s 1 − εMð Þ + m + sð Þ½ �,

ð56Þ

E+
1mð Þ2 −M2 = 2ω+

1 mj j + 2ð Þ − b2

ω+
1ð Þ2 E+

1m +Mð Þ2

−
3b2
2ω+

1
E+
1m +Mð Þεs + 2ω+

1 εMs − m + sð Þ½ �,

ð57Þ

E−
1mð Þ2 −M2 = 2ω−

1 m + sj j + 2ð Þ − b2

ω−
1ð Þ2 E−

1m −Mð Þ2

+ 3b2
2ω−

1
E−
1m −Mð Þεs

− 2ω−
1 s 1 − εMð Þ + m + sð Þ½ �,

ð58Þ

where ω±
1 is given by

ω±
1 =

ffiffiffiffiffiffi
Δ±

18
3

r
1
A± −

ffiffiffiffiffiffiffiffi
2

3Δ±
3

r
C±, ð59Þ

with

Δ± =
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 A±½ �4 D±½ �2 + 4 A±½ �3 C±½ �3

q
− 9 A±� �2

D±, ð60Þ
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and the requirement that 27½A±�4½D±�2 + 4½A±�3½C±�3 > 0.
Such energies represent the first two energy levels of the
system. For simplicity, we perform a numerical analysis
only for the case n = 0. In this way, by studying equation
(55), we find that for s = 1 and m > 0, the energy of the
particle is infinitely degenerate, with respective eigenvalues
E+
0m = −1 and E+

0m = −0:33, whereas for m < 0, only one of
the roots is infinitely degenerate with energy E+

0m = −1
(Figure 3(a)). On the other hand, when we analyze equa-
tion (55) for s = −1, we verify that the energy spectrum is
defined only for m > 0, and one of the roots is infinitely
degenerate with eigenvalue E+

0m = −1 (Figure 3(b)). These
characteristics are also present in the energies from equa-
tion (56). For s = 1, the energies are defined only for m > 0
and one of the roots is infinitely degenerate, with eigenvalue
E−
0m = 1 (Figure 4(a)). For s = −1 and m < 0, there is an infi-

nitely degenerate root with eigenvalue E−
0m = 1 while for m >

0 both roots are infinitely degenerate with respective energies
E−
0m = 1 and E−

0m = −2:7 × 107 (Figure 4(b)).
To determine the energies corresponding to n = 2, 3, 4,⋯,

we must make use of the above recipe. However, as we can

see from equation (53), the polynomials of degree n ≥ 3
resulting from condition (48), in general, not all roots are
physically acceptable. In the absence of deformation, the
resulting equation describes the motion of an electron sub-
ject to interactions (15), (16), and (17). In the literature,
models in this context can be found. With the presence of
these interactions in the Dirac equation, the wave function
depends on several parameters. Thus, if we consider a null
deformation, a direct comparison with particular cases in
the literature is not immediate. The reader can see some
examples in Refs. [41, 71–73].

4. Conclusions

We have studied the relativistic quantum dynamics of a
spin 1/2 charged particle with minimal and scalar cou-
plings in the quantum deformed framework generated by
the κ-Poincaré-Hopf algebra. The problem has been for-
mulated using the κ-deformed Dirac equation in two
dimensions. The κ-deformed Pauli equation was derived
to study the dynamics of the system taking into account
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Figure 3: Illustration of the energy eigenvalues in the spin symmetry limit (equation (55)) as a function of the parameter m for (a) s = 1 and
(b) s = −1. We use units such as M = 1, n = 1, b = 1, and ε = 10−7.
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and (b) s = −1. We use units such as M = 1, n = 1, b = 1, and ε = 10−7.
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the spin and pseudospin symmetry limits. For the κ
-deformed Dirac-Pauli equation obtained (equation (26)),
we have argued that only particular choices of radial func-
tion VðrÞ lead to exactly solvable differential equations.
We have considered the case where the particle interacts
with a uniform magnetic field, a planar harmonic oscilla-
tor, and a linear potential. We have verified that the linear
potential leads to a Coulomb-type term in the κ-deformed
sector of the radial equation. The resulting equation obtained
is a Heun-type differential equation. Analytical solutions for
both spin and pseudospin symmetry limits enabled us to
obtain expressions for the energy eigenvalues (through the
use of equations (47) and (48)) and wave functions. Because
of the limitations imposed by condition (48), we have derived
expressions for the energies corresponding only to n = 0
(equations (55) and (56)) and n = 1 (equations (57) and
(58)). We have shown that the energy eigenvalues and wave
functions are modified by both the spin element s and the
deformation parameter ε. We believe that future experiments
may provide some estimate on the magnitude of the deforma-
tion parameter within the context of the model studied.
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