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ABSTRACT 
 

Land use-land cover (LULC) change analysis is essential for understanding the spatial and 
temporal change of landscape during a known long period for sustainable management of natural 
resources. The main objective of this study was to assess land use-land cover change using an 
object-based image classification technique which is a recent image classification technique with 
better accuracy than traditional pixel based image classification. The study was conducted in the 
catchment area of the Irga River, a tributary of the Barakar River, which falls in the Giridih district of 
Jharkhand (India). The catchment of the study area was delineated using SRTM DEM data (30 m 
spatial resolution). LANDSAT images (TM and OLI-TIRS) were used to develop the land use- land 
cover maps of 1997, 2007, and 2017 using object-based image analysis (OBIA). The images were 

Original Research Article 



 
 
 
 

Yadav et al.; Int. J. Environ. Clim. Change, vol. 12, no. 12, pp. 1285-1298, 2022; Article no.IJECC.95578 
 
 

 
1286 

 

classified and analyzed using ArcGIS and eCognition Developer 64 software. The accuracy of the 
classified images for each year was assessed by preparing the error matrix and calculating the 
Kappa coefficient. The overall accuracies of classified images were computed to be 88%, 83% and 
91% while Kappa coefficients were found to be 0.8455, 0.7706 and 0.8796 for year 1997, 2007 and 
2017 respectively. Over the 20 years (1997-2017), agricultural land increased by 12.23%, 
settlement increased by 76.62%, wasteland decreased by 39.59%, vegetation increased by 
14.83%, water-bodies increased by 26.29%, and river area decreased by 16.66%. The analysis 
indicated an increasing trend in agricultural land, settlement, and vegetation while decreasing 
trends in wasteland and river areas. However, no definite trend was observed in the extent of the 
water-bodies.The results indicated that waste land greatly reduced and converted into settlement 
and agricultural land in the catchment. 
 

 
Keywords: Land use-land cover; eCognition; remote sensing; GIS; OBIA; LULC change. 
 

1. INTRODUCTION 
 

Land use -land cover (LULC) change is one of 
the major components of environmental change 
which affects climate, land, and biodiversity [1-3]. 
Several changes in land use -land cover, such as 
long-term changes, are due to climate, natural 
causes, and human activity which play a 
significant role in changing this LULC [4]. As 
LULC change has an impact on global warming 
and natural ecosystems, therefore, its 
assessment and monitoring are essential. It is 
also needed by local agencies, state and federal 
for water- resource inventory (quantity, quality, 
management, and threats), flood control, and 
water-supply policies. In addition, natural or 
human-induced LULC change affects soil 
erosion, acidification, and soil organic depletion 
[4,5]. As vegetation cover increases, soil loss 
from the area decreases, which is considered 
adequate for reducing the energy of erosion 
driving forces [6]. Remote sensing and 
Geographic Information systems (RS & GIS) are 
potentially excellent and efficient techniques for 
analysing the spatial and temporal patterns of 
LULC. Moreover, it improved the convenience 
and accuracy of spatial data of land resource 
inventory and more productive analysis [5,7]. 
 

Over the world, considerable research has been 
done on image classification using a pixel-based 
image. Dewan and Yamaguchi (2009) evaluated 
land use/cover changes and urban expansion in 
Greater Dhaka, Bangladesh, between 1975 and 
2003 using LANDSAT (MSS, TM, and ETM+) [3]. 
Abushnaf et al. (2015) prepared a land use/land 
cover map for Giridih district [8]. Sharma et al. 
(2011) to study the impact of land use and land 
cover change on soil erosion potential of a 
Maithon reservoir catchment, Jharkhand state 
[5]. Similarly, more researchers conducted 
studies using the pixel-based technique for 

different purposes and areas across the globe [9-
14]. 

 
The object-based image analysis (OBIA) 
technique is a recently developed image 
classification technique that classifies images 
based on the object in place of a pixel as a 
traditional method [15,16]. Like pixel-based 
analysis, many researchers nowadays are 
interested in the OBIA technique. For example, 
Conchedda et al. (2008) used an object-based 
image classification approach to mangrove 
mapping [17]. Kindu et al. (2013) analysed land 
use-land cover changes for the Munessa-
Shashemene area of the Ethiopian highlands 
over 39 years using Landsat MSS (1973), TM 
(1986), ETM+ (2000), and RapidEye (2012) data 
[18]. Deka et al. (2014) studied land use and land 
cover spatial change in the Kamrup district of 
Assam [19]. Alqurashi and Kumar, 2014 [20] 
have reported similar works; Gudex-Cross et al., 
2017; Toure et al., 2018 [21-22] and many 
others. Several researchers reported that OBIA 
provides more accurate results than the 
traditional pixel classification [23-25]. For 
providing the latest and comprehensive 
information on various aspects for efficient and 
scientific planning of an area, monitoring and 
assessing LULC change is particularly important. 
Knowing the importance of LULC change 
assessment, the present research paper focuses 
on determining a change in LULC in the Irga 
catchment using the object-based image 
classification method. 

 
2. MATERIALS AND METHODS  
 
2.1 Study Area 
 
Irga river catchment is situated in the South-West 
part of Giridih district of Jharkhand, India, 
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between 24° 10' 08" and 24° 28' 04" N latitudes 
and 85° 52' 04" and 86° 08' 11" E longitudes. 
The elevation of the catchment ranges from 257 
to 411 m above sea level. It covers 479 km

2
 of 

the total geographical area. The catchment 
receives an annual rainfall of 1,100-1,350 mm. 
The soil pH ranges from 4.5 to 7.2 [26]. The 
location map of the study area is shown in           
Fig. 1. 
 

2.2 Data and Software 
 

Datasets used in the present study are shown in 
Table 1. The segmentation and classification of 
the satellite images have been done with 
eCognition developer 64 (V 9.0.1). ArcGIS 10.1 
software has been used for handling, analysing 
and assessing various data types and final map 
preparation. 

 
 

Fig. 1. Location map of Study area 
 

Table 1. Different datasets used in the study 
 

S.No. Datasets used Path/Row Source 

1. SRTM DEM data  https://earthexplorer.usgs.gov 
[27] 

2. LANDSAT images 
a) Thematic Mapper (TM) for the years 

1997 and 2007 
b) Operational Land Imager and 

Thermal Infrared Sensor (OLI-TIRS) 
for the year 2017 

 
140/43 
 
140/43 

https://earthexplorer.usgs.gov 
[27] 

3. Google Earth images  Google Earth 
4. Field observations  Handheld GPS 

 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3 Image Classification for LULC 
Mapping 

 
The object based image classification method 
has been adopted in the study which is a newly 
developed image classification technique for all 
three year LANDSAT data. An image has been 
classified into six classes (i.e. Agricultural land, 
Vegetation, Water, River, Wasteland and 
Settlement area) as presented in Table 2. In 
object-based image analysis segmentation is 
primary step before an analyst can analyses and 
use the images. During selection of training 
sample Normalised Difference Vegetation Index 
(NDVI) and Normalized Difference Water Index 
(NDWI) were used to extract various features 
shown in Table 2. 
 
NDVI [28] is a well-known vegetation index in 
LULC image analysis to distinguish between 
vegetated and non-vegetated areas and is as 
follows: 
 

NDVI = (NIR - RED)/ (NIR + RED)          (1) 
 
NIR and RED are the mean values of Near 
Infrared and Red bands, respectively, for a given 
object of segmentation. It varies from -1 (bare 
soil or water bodies) to 1(healthy green 
vegetation).  
 
NDWI [29] is utilised to extract open water 
features in satellite imagery. It is also used as a 
metric for masking out black bodies – water and 
shadows. It is given by: 
 

NDWI = (GREEN - NIR)/ (GREEN + NIR) (2) 
 
GREEN and NIR are the mean values of Green 
and Near Infrared bands, respectively, for a 
given object of segmentation, the values range 
from -1 to 1. High values of NDWI indicate the 
presence of extensive deep water bodies, 
whereas lower values indicate vegetation. 
 
2.3.1 Segmentation 
 
In object-based image analysis, segmentation is 
primary step before an analyst can analyse and 
use the images. Often proper image 
segmentation improves the classification result 
[30]. Segmentation is the process of grouping 
pixels of same spectral, pixel and textual values 
from an image into objects [31]. In the present 
study, the multi-resolution logarithm was 
performed for image segmentation. The multi-
resolution logarithm is often used with good 

results for the segmentation of images [32]. The 
Segmentation criterion (parameters) used for all 
three year images is presented in Table 3. 
 
The algorithm starts at the one-pixel level in an 
image and works bottom-up based. During the 
process, more and more pixels are grouped 
together in larger segments [33]. Pixels are 
grouped together if the heterogeneity of the 
spectral and spatial values does not exceed a 
minimum [34]. Determining the appropriate 
parameters for segmentation is often achieved 
by ‘trial and error’ and a visual inspection of the 
segmentation result [32,35]. In present study, the 
multi-resolution logarithm was performed for 
image segmentation. The Segmentation 
parameters shape and compactness factor used 
0.2 and 0.8 for all three year images, 
respectively, whereas scale parameter and 
weightage of bands were assigned by visual 
checking. 
 

2.3.2 Classification 
 

After segmentation, classification was performed 
using Classification window under process tree in 
eCognition main window. Using class hierarchy 
window all six LULC classes i.e. Agricultural 
Land, Settlement, Waste Land, Vegetation, 
Water bodies and River were added. Further, 
image classification was performed by Standard 
Nearest Neighbor Object based method for all 
three year. After classification, classified map 
was exported in vector format (Shape 
file).UndereCognition main window with process 
tree, image object information, feature view and 
class hierarchy window were used for 
classification. 
 

Exported map of 1997, 2007 and 2017 were 
added in ArcGIS and using symbology vector file 
was labelled and Colour is added to every class. 
By using various GIS techniques like overlay, 
integration, change detection and area 
calculation, various land use/land cover     
classes pertaining to different classes were 
determined. Wherever the classification was not 
good, the classification was performed again 
after Classification change detection was 
performed by cross-tabulation and overlay-
intersection. 
 

2.4 Accuracy Assessment 
 

The classification accuracy assessment was 
done by computing overall accuracies and Kappa 
coefficients and using reference test pixel data 
[36, 37 and 38]. An accuracy assessment of the
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Table 2. Different classes of land use- land cover adopted for the study 
 

Land use- land cover 
Classes 

Definition 

Agricultural land Land with crops or empty agricultural lands 
Vegetation All tree and shrub-covered surfaces 
Water bodies Reservoir, pond, and swamp 
River rivers 
Wasteland Open areas with low vegetation such as bushes and grasses, as well 

as bare ground prone to erosion 
Settlement/built-up area Fields with residential houses, commercial or industrial buildings 

 

 
 

Fig. 2. The flow chart of the method followed for change analysis 
 
classification results was performed using 
reference data taken from intensive field visits 
and satellite data. Reference data for the years 
1997 and 2007 were collected with satellite data 
the same year different seasons by visual 
interpretation, while in-depth field visits for 2017. 
The overall accuracies and Kappa coefficients 
[39,40] were derived to assess the accuracy of 
the classification maps. The error matrix for each 
year was generated by comparing the predicted 
value from classified map to ground truth data. In 
addition, the Kappa coefficient as a discrete 

multivariate technique is also performed in the 
accuracy assessment. Kappa coefficient is 
computed as, 
 

  
     

 
              

 
   

             
 
   

           (3) 

 
Where, r = Number of rows in the error matrix, xii 
=Number of observations in row i and column i 
(on the major diagonal), x(i+) =Total number of 
observations in rows i (shown as marginal total to 
right of the matrix), x(+i)=Total number of 
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observations in column i (shown as marginal total 
at the bottom of the matrix), N = total number of 
observations included in the matrix. 
 
Kappa is an actual dimensionless number 
between -1 to 1: the value close to 1 shows 
maximum agreement, while the value of -1 is 
total disagreement. The ranges of                              
Kappa coefficients for different levels of 
agreement [39,40] used for analysis of classified 
images. 
 

2.5 Change Detection  
 
Change detection can be assessed by                          
using data from a single sensor as                             
well as from multiple sensors at different 
acquisition dates. It was done by comparing 
changes in LULC in three time periods, viz. 
1997-2007, 2007-2017 and 1997-2017. The flow 
chart of the method followed for image 
classification and change analysis is shown in 
Fig. 2. 
 

3. RESULTS AND DISCUSSION 
 
Irga river catchment and drainage map were 
generated using SRTM DEM and shown in Fig. 
3. Land use and land cover classification for the 
years 1997, 2007 and 2017 were performed by 
applying the Standard Nearest Neighbor Object-
based classification method in eCognition 
software.  
 

3.1 Land Use and Land Cover Mapping 
 
The prepared thematic classification maps for the 
study area's 1997, 2007 and 2017 are shown in 
Fig. 4a to 4c, respectively. The computed areas 
under different LULC classes for these years are 
presented in Table 3. From Table 3, it is 
observed that the study area contained 26246.34 
ha (54.75 %) agricultural land followed by 
15097.86 ha (31.50 %) waste land, 3280.77 ha 
(6.84 %) settlement, 2371.05 ha (4.95 %) 
vegetation, 134.55 ha (0.28%), waterbodies and 
804.42 ha (1.68%) river area in the year 
1997.The overall accuracy was 88.23%, and the 
kappa statistic was found to be 0.8455, indicating 
almost perfect agreement (Table 4). The reason 
behind such agreement is that the study used 
object-based image classification, which is more 
accurate than pixel based. This result is also 
supported by the work of Rahman and Saha 
(2008), and Adam et al. (2016). 
 
The classification of the image of the year 2007 
indicated that the study area consisted of 
27093.33 ha (56.52%) agricultural land followed 
by 4529.43 ha (26.71%) waste land, 12802.23 ha 
(9.45%) settlement, 2533.14 ha (5.28%) 
vegetation, 232.38 ha (1.55%) river and 744.39 
ha (0.48%) waterbodies. The overall accuracy 
was 83.92 %, and the Kappa statistic was 0.7706 
(Table 5). The obtained value of the kappa 
statistic indicates that there is almost perfect 
agreement. 
 

 
 

Fig. 3. Irga catchment with drainage lines and Outlet of Irga catchment 
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Table 3. Areal the extents of land use -land cover for the years 1997, 2007 and 2017 
 

Class Name Area in 1997 Area in 2007 Area in 2017 

ha % ha % ha % 

Agricultural Land 26246.34 54.75 27093.33 56.52 29457.09 61.45 
Settlement 3280.77 6.84 4529.43 9.45 5794.47 12.09 
Waste land 15097.86 31.50 12802.23 26.71 9119.88 19.03 
Vegetation 2371.05 4.95 2533.14 5.28 2722.59 5.68 
Waterbodies 134.55 0.28 232.38 0.48 169.92 0.35 
River 804.42 1.68 744.39 1.55 670.41 1.40 

 

 
 

 
 

Fig. 4. Land use- land cover map of a) the year 1997, b) the year 2007, c) the year 2017 

a 
b 

c 
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Table 4. Error matrix of LULC classification for the year 1997 
 

 True LULC class 

  WL AL S V W R Row 
Total 

Users 
Accuracy 
(%) 

Producer 
Accuracy 
(%) 

P
re

d
ic

te
d

 L
U

L
C

 

c
la

s
s

 

WL 13 1 0 0 0 1 15 86.67 86.67 
AL 2 16 0 0 0 0 18 94.12 88.89 
S 0 0 5 1 0 0 6 83.33 83.34 
V 0 0 1 4 0 0 5 80.00 80.00 
W 0 0 0 0 4 0 4 100.00 100.00 
R 0 0 0 0 0 3 3 75.00 100.00 
Column 
Total 

15 17 6 5 4 4 51   

 Kappa value 0.8455 
 Overall 

Accuracy 
88.23 % 

AL-Agricultural Land, WL-Waste land, S-Settlement, V-Vegetation, W-Waterbodies and R-River 
 

Table 5. Error matrix of LULC classification for the year 2007 
 

 True LULC class 

  AL S WL V W R Row Total Users 
accuracy 
(%) 

Producer 
accuracy 
(%) 

P
re

d
ic

te
d

 

L
U

L
C

 c
la

s
s

 

AL 44 3 6 1 0 0 54 91.67 86.67 
S 1 5 1 1 0 0 8 55.56 88.89 
WL 3 0 25 1 0 0 29 78.13 83.34 
V 0 1 0 5 0 0 6 62.50 80 
W 0 0 0 0 8 0 8 100.00 100 
R 0 0 0 0 0 7 7 100.00 100 
Column Total 48 9 32 8 8 7 112   

 Kappa value 0.7706 
 Overall Accuracy 83.92% 

AL-Agricultural Land, WL-Waste land, S-Settlement, V-Vegetation, W-Waterbodies and R-River 

 
Table 6. Error matrix of LULC classification for the year 2017 

 

 True LULC class 

  AL S WL R V W Row 
Total 

Users 
accuracy 
(%) 

Producer 
accuracy 
(%) 

P
re

d
ic

te
d

 L
U

L
C

 

c
la

s
s

 

AL 40 0 2 0 0 0 42 97.56 95.24 
S 1 10 1 0 1 0 13 90.91 76.92 
WL 0 0 18 0 2 0 20 81.82 90 
R 0 0 0 8 0 0 8 100 100 
V 0 1 0 0 8 0 9 72 88.89 
W 0 0 1 0 0 7 8 100 87.50 
Column 
Total 

41 11 22 8 11 7 100   

 Kappa value 0.8796 
 Overall 

accuracy 
91% 

AL-Agricultural Land, WL-Waste land, S-Settlement, V-Vegetation, W-Waterbodies and R-River 
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Table 7. Comparison of LULC classes and the change during the period 1997 to 2017 
 

Class Name Changes 
(1997-2007) 

Changes 
(2007-2017) 

Changes 
(1997-2017) 

Average rate of 
change(1997-2017) 

Area (ha) Percent Area (ha) Percent Area (ha) Percent Ha/yr Percent 

Agricultural Land 846.99 3.23 2363.76 8.72 3210.75 12.23 160.5375 0.6115 
Settlement 1248.66 38.06 1265.04 27.93 2513.70 76.62 125.685 3.831 
Waste land -2295.63 -15.21 -3682.35 -28.76 -5977.98 -39.59 -298.899 -1.9795 
Vegetation 162.09 6.84 189.45 7.48 351.54 14.83 17.577 0.7415 
Waterbodies 97.83 72.71 -62.46 -26.88 35.37 26.29 1.7685 1.3145 
River -60.03 -7.46 -73.98 -9.94 -134.01 -16.66 -6.7005 -0.833 

 

 
 

Fig. 5. Various classes of Irga catchment a) settlement, b) water body, c) waste land, d) river, e) agricultural Land, f) Vegetation, g) waste land,  
h) River outlet  
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Fig. 6. Comparison of LULC areas for the years 1997, 2007 and 2017 
 

 
 

Fig. 7. Land use-land cover change during 1997-2007, 2007-2017, 1997-2017 
 

Similarly, in the year 2017, the study area 
consisted of 29,457.09 ha (61.45 %) agricultural 
land followed by 5,794.47 ha (19.03 %) waste 
land, 9119.88 ha (12.09 %) settlement, 2,722.59 
ha (5.68 %) vegetation, 169.92 ha (1.40 %) river 

and 670.41 ha (0.35 %) waterbodies. The overall 
accuracy was 91 %, and the Kappa statistic was 
found to be 0.8796, which indicates that the 
agreement is almost perfect (Table 6). During the 
site visit, photographs of different LULC classes 
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were taken for ground verification which is shown 
in Fig. 5. 
 

3.2 Land Use and Land Cover Change 
Analysis 

 
The LULC changes have been summarised in 
Table 7. The results of the change detection 
analysis exhibit considerable changes in LULC in 
the study area in three different periods (from 
1997 to 2007, from 2007 to 2017 and 1997 to 
2017). This table indicates that significant 
changes in LULC classes have occurred over 20 
years. 
 
During 1997-2007 the areal extent of 
waterbodies increased highly by 72.71 % (97.83 
ha) followed by the settlement area by 38.06% 
(1,248.66 ha), vegetation area by 6.84% (162.09 
ha) and agricultural land by 3.23 % (846.99 ha) 
while the decreasing trend was found in 
vegetation 15.21 % (2,295.63 ha) followed by 
river 7.46% (60.03 ha) in this period. The high 
increase in the waterbodies area might be 
attributed to the construction of the Naulakha 
reservoir nearby Rajdhanwar and some new 
ponds in the catchment during this period. On the 
other hand, over the next decade (2007-2017), 
an increasing trend was found in settlement by 
27.93% (1,265.04 ha), followed by agricultural 
land by 8.72% (2,363.76 ha), vegetation by 
7.48% (189.45 ha) while drastic decrease found 
in wasteland 28.76% (3,682.35 ha) and 
waterbodies 26.88% (62.46 ha). The river also 
showed a decrease of 9.94% (73.98 ha), which is 
higher than the previous decade (Table 7).  
 
A considerable change in aerial extent has been 
noticed in agricultural [12.23% (3,210.75 ha)] and 
vegetation [14.83% (351.54 ha)] land use during 
the period 1997 to 2017. The extent of settlement 
increased by 76.62% (2,513.70 ha), while waste 
land highly decreased by 39.59% (5,977.98 ha). 
A considerable part of the wasteland has 
converted into agricultural land, settlement and 
vegetation. The waterbodies area increased by 
26.29% (35.37 ha), while the river area 
decreased by 16.66% (134.01 ha) over two 
decades. The reasons behind the increase in 
waterbodies area might be the construction of 
water harvesting structures and other water-
based structures by the Government and other 
agencies through watershed development 
projects. 
 

Further, the graphical comparison of LULC areas 
for the three years (1997, 2007 and 2017) is 

shown in Fig. 6, while Fig. 7 show changes over 
the period 1997-2007, 2007-2017 and 1997-
2017, respectively. These figures, as well as 
Table 7, reflect an increasing trend in agricultural 
land, settlement and vegetation while decreasing 
in wasteland and river areas. However, no 
definite trend is observed in the extent of the 
waterbodies. 

 

4. CONCLUSION 
 
Land use -land cover (LULC) change is one of 
the major components of environmental changes 
which affect soil erosion. The land use-land 
cover information is essential for proper 
management, planning and monitoring of natural 
resources available in a particular region. This 
study's main objective is to examine LULC 
changes and their dynamics that occurred in the 
Irga catchment between 1997 and 2017 using 
remote sensing and GIS. The LULC maps of the 
1997, 2007 and 2017 years were developed 
using LANDSAT images (TM and OLI/TIRS) by 
the OBIA technique, which has better accuracy 
than traditional pixel-based image classification. 
The land use land cover were classified into six 
classes viz. agricultural land, settlement, 
vegetation, waste land, water body and river. 
Accuracy assessment of prepared maps was 
made based on the error matrix and kappa 
coefficient. Change detection was done by 
comparing changes in LULC in three time 
periods, viz. 1997-2007, 2007-2017 and 1997-
2017. The overall accuracy and kappa statistics 
for 1997, 2007 and 2017 are 88.23% and 
0.8455; 83.92% and 0.7706; and 91% and 
0.8796, respectively. Over the period 1997 to 
2017, the area under agricultural land, 
settlement, natural vegetation and  increased by 
12.23%, 76.62%, 14.83% and 26.29%, 
respectively, while wasteland and river 
decreased by 39.59% and 16.66%, respectively. 
The study area had undergone a significant 
LULC change over the preceding 20 years, 
according to a field survey, digital image 
classification results, and change detection 
results. As a result, in order to avoid negative 
effects brought on by LULC changes in the study 
area, sustainable land use planning and 
management, proper implementation of soil, and 
water conservation measures, and provision of 
alternative livelihood strategies for local 
communities should all be implemented. The 
generated LULC map from the present study can 
be used for hydrological modelling and            
soil erosion assessment of the Irga river 
catchment. 
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