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This paper is devoted to investigating the fixed-time and finite-time synchronization for fuzzy competitive neural networks with
discontinuous activation functions. We introduce Filippov solution for overcoming the nonexistence of classical solutions of
discontinuous system. Using the fixed-time synchronization theory, inequality technique, we obtain simple robust fixed-time
synchronization conditions. Designing proper feedback controllers is a key step for the implementation of synchronization.
Furthermore, based on the fixed-time robust synchronization, we design a switching adaptive controller and obtain the finite-time
synchronization. It is noted that the settling time is independent on the initial value in the fixed-time robust synchronization.
Hence, under the conditions of this paper, the considered system has better stability and feasibility. Finally, the theoretical results
of this paper are attested to be indeed feasible in terms of a numerical example.

1. Introduction

Fuzzy cellular neural networks were first proposed in [1].
Fuzzy cellular neural networks can fulfil vagueness or uncer-
tainty for human cognitive processes. Therefore, the use of
fuzzy network system can more accurately simulate the situ-
ation of the real world. In recent decades, there have been a
lot of studies on fuzzy neural network systems. In [2], the
authors introduced fuzzy cellular neural network theory
and applications. Ali et al. [3] studied global stability analysis
of fractional-order fuzzy BAM neural networks with time
delay and impulsive effects. Chen, Li, and Yang [4] consid-
ered asymptotic stability of delayed fractional-order fuzzy
neural networks with impulse effects. In [5], the authors
studied a fuzzy Cohen-Grossberg neural networks and
obtained global exponential stability by using M −matrix
and Liapunov functions. The use of the Lyapunov method
and the linear matrix inequality (LMI) approach, existence,
uniqueness, and the global asymptotic stability of a class of
fuzzy cellular neural networks with mixed delays were
obtained in [6]. For discrete-time fuzzy BAM, see [7]; for
memristor-based fuzzy cellular neural networks, see [8]; for

fuzzy Cohen-Grossberg-type neural networks, see [9]; and
for chaotic fuzzy cellular neural networks, see [10].

Synchronization is a widespread phenomenon in nature.
Its research has important theoretical significance and prac-
tical application value (see [11–19] and related references).
Synchronization means that the state of coupled system
tends to be consistent with time moving. In finite-time syn-
chronization, the settling time is dependent on the initial
conditions which restrict its applications (see [20–24]). In
2012, Polyakov [25] proposed the concept of fixed-time syn-
chronization. In the case of fixed-time synchronization, the
settling time is independent on the initial conditions. Hence,
fixed-time synchronization has stronger applicability than
finite-time synchronization. Compared with many finite-
time synchronization problems on the neural networks, the
research of fixed-time synchronization is still in a primitive
stage, and lots of results have been obtained for the fixed-
time synchronization of neural networks (for more results
about fixed-time synchronization, see [25–28]).

Competitive neural networks (CNNs) can describe the
dynamic behavior of cortical cognitive maps with unsuper-
vised synaptic modifications. In the early studies for CNNs,

Hindawi
Advances in Mathematical Physics
Volume 2022, Article ID 5926415, 12 pages
https://doi.org/10.1155/2022/5926415

https://orcid.org/0000-0002-4484-8789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5926415


Meyer-B€ase [29] studied CNNs with different time scales
and obtained dynamic behavior of CNNs. In the CNNs,
there exist two classes of state variables: the short-term
memory (STM) variable describing the fast neural activity
and the long-term memory (LTM) variable describing the
slow neural activity. Therefore, there exist two classes of time
scales in the CNNs: one of which describes to the fast change
of the state and the other to the slow change of state. CNNs
have extensive applications in different industries and have
been studied by many researchers. Gu, Jiang, and Teng
[30] studied existence and global exponential stability of
equilibrium of CNNs with different time scales and multiple
delays. Meyer-B€ase, Roberts, and Th€ummler [31] considered
the local uniform stability of CNNs with different time scales
under vanishing perturbations. For stochastic stability anal-
ysis of CNNs, see [32]; for multistability of CNNs, see [33];
for multistability and instability of CNNs, see [34]; and for
robust stability analysis of CNNs, see [34].

To the best of our knowledge, there are few papers
studying the finite-time and fixed-time synchronization
problems of fuzzy CNNs with discontinuous activations by
designing the adaptive controllers. Inspired by the above
work, we study the problems of finite-time and fixed-time
synchronization of CNNs with discontinuous activation
functions. The motivation of this paper is to enrich and
develop the research of competitive neural networks. Partic-
ularly, we will study a fuzzy competitive neural networks
with discontinuous activation functions which is a new
model. The main advantages are summarized in the follow-
ing three aspects:

(1) By designing some proper feedback controllers, we
obtain simple finite-time and fixed-time synchroni-

zation conditions which can be easily tested. Fur-
thermore, the above synchronization conditions are
different from the corresponding ones of [20–22]

(2) We first study a fuzzy CNNs with discontinuous
activations which can extend some previous results
to the discontinuous case, such as [26, 27, 35, 36].
In addition, the study of this paper enriches the
research content of CNNS (see [30, 31])

(3) In the synchronization control, adaptive control is
often more valuable than state-feedback control.
Through designing a proper and simple switching
adaptive control, we consider the finite-time syn-
chronization of the addressed drive-response sys-
tems. Furthermore, the upper bounds of the
settling time are also easily estimated. Hence, our
results are more valuable than the corresponding
ones of [13, 15, 17]

We organize the following sections as follows: Section 2
gives system description and some preliminaries. In Section
3, we give some sufficient conditions for the finite-time and
fixed-time robust synchronization. In Section 4, a numerical
example is given to test the feasibility of the obtained results.
Finally, some conclusions and discussions are drawn in Sec-
tion 5.

2. Model Description and Preliminaries

In this paper, we consider the following delayed fuzzy CNNs
with discontinuous activations:

with initial conditions

xi sð Þ = ϕxi sð Þ, Si sð Þ = ϕSi sð Þ, s ∈ −τ, 0½ �, ð2Þ

where i = 1, 2,⋯, n, xiðtÞ denotes state of neuron current; SiðtÞ
is synaptic transfer efficiency, f jðxjðtÞÞ is the output of neu-
rons; ai > 0 is constant; bij denotes the connection weight, di
is the strength of the external stimulus; cij is feed-forward tem-
plate; αij and βij are elements of fuzzy feedback Min template
and fuzzy feedback Max template, respectively; Tij and Rij are
fuzzy feed-forward Min template and fuzzy feed-forward Max
template, respectively; ∨ and ∧ are fuzzy OR and fuzzy AND

operations, respectively; vj denotes input of the jth neuron;
and τjðtÞ ≥ 0 corresponds to the transmission delay along the
axon of the jth unit with τ =maxt∈ℝ,1≤j≤nτjðtÞ.

In view of drive-response synchronization, take system (1)
as the drive system and design the following response system:

STM : _yi tð Þ = −aiyi tð Þ + 〠
n

j=1
bij f j yj tð Þ

� �
+ diRi tð Þ + 〠

n

j=1
cijvj

+ ∧
j=1

n
Tijvj + ∧

j=1

n
αij f j yj t − τj tð Þ

� �� �
+ ∨

j=1

n
βij f j yj t − τj tð Þ

� �� �
+ ∨

j=1

n
Rijvj + ui tð Þ

LTM : _Ri tð Þ = −Ri tð Þ + f i yi tð Þð Þ + ~ui tð Þ, ð3Þ

STM : _xi tð Þ = −aixi tð Þ + 〠
n

j=1
bij f j xj tð Þ

� �
+ diSi tð Þ + 〠

n

j=1
cijvj + ∧

j=1

n
Tijvj

+ ∧
j=1

n
αij f j xj t − τj tð Þ

� �� �
+ ∨

j=1

n
βij f j xj t − τj tð Þ

� �� �
+ ∨

j=1

n
Rijvj

LTM : _Si tð Þ = −Si tð Þ + f i xi tð Þð Þ,

8>>>>>><
>>>>>>:

ð1Þ
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where uiðtÞ and ~uiðtÞ are controllers. System (3) has the fol-
lowing initial values

yi sð Þ = ϕyi sð Þ, Ri sð Þ = ϕRi sð Þ, s ∈ −τ, 0½ �, i = 1, 2,⋯, n: ð4Þ

Throughout this paper, we need the following assumptions:
(H1) For each i = 1, 2,⋯, n, f i : ℝ⟶ℝ is piecewise

continuous; i.e., f i is continuous except on a countable set
of isolate points ξik. There exist finite right and left limits
f +i ðξikÞ and f −i ðξikÞ. Moreover, f i has at most a finite number
of discontinuities on any compact interval of ℝ.

(H2) For each i = 1, 2,⋯, n, there exist nonnegative con-
stants λ1i and λ2i such that

sup
γi∈ �co f i xið Þ½ �,ηi∈ �co f i yið Þ½ �

γi − ηij j ≤ λ1i yi − xij j + λ2i, ð5Þ

where

�co f i xið Þ½ � = min f −i xið Þ, f +i xið Þ� �
, max f −i xið Þ, f +i xið Þ� �� 	

,

�co f i yið Þ½ � = min f −i yið Þ, f +i yið Þ� �
, max f −i yið Þ, f +i yið Þ� �� 	

:

ð6Þ

Since system (1) has discontinuous connection strength
coefficients, the classic solution is not suitable for system
(1); we introduce Fiippov solution for system (1). Consider
the following dynamic system

_x tð Þ = f t, x tð Þð Þ, x 0ð Þ = x0, t ≥ 0, ð7Þ

where xðtÞ is the state variable. If f ðt, xðtÞÞ is locally measur-
able function but is discontinuous with respect to xðtÞ, Filip-
pov [37] discussed the solution of Cauchy problem (7) and
gave the following definition.

Definition 1. Assume that f ðt, xðtÞÞ: ℝ+ ×ℝn ⟶ℝn is
locally bounded and Lebesgue measurable for t ≥ 0. A
vector-value function xðtÞ is called to be a Filippov solution
of system (7) if xðtÞ is absolutely continuous and satisfying
the following differential inclusionwhere t1 ≥ 0 or t1 = +∞,
F½ f ðt, xðtÞÞ� is the Filippov set-valued map, �co is the convex
closure of set N, μ is the Lebesgue measure, and Bðx, δÞ is
the open ball with the center at x ∈ℝn and the radius δ ∈ℝ+.

Let XðtÞ = ðx1ðtÞ,⋯,xnðtÞ, S1ðtÞ,⋯,SnðtÞÞT be the solu-
tion of system (1) with corresponding initial conditions
and YðtÞ = ðy1ðtÞ,⋯,ynðtÞ, R1ðtÞ,⋯,RnðtÞÞT be the solution
of system (3) with corresponding initial conditions. For i =
1, 2,⋯, n and T ∈ ð0,+∞�, if xiðtÞ, SiðtÞ, yiðtÞ, and RiðtÞ are
absolutely continuous on any compact subinterval of ½0, TÞ
and satisfy the following inclusions:

_xi tð Þ ∈ −aixi tð Þ + 〠
n

j=1
bij �co f j xj tð Þ

� �h i
+ diSi tð Þ + 〠

n

j=1
cijvj

+ ∧
j=1

n
Tijvj + ∧

j=1

n
αij �co f j xj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
βij �co f j xj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
Rijvj,

_Si tð Þ ∈ −Si tð Þ + �co f i xi tð Þð Þ½ �,

_yi tð Þ ∈ −aiyi tð Þ + 〠
n

j=1
bij �co f j xj tð Þ

� �h i
+ diRi tð Þ + 〠

n

j=1
cijvj

+ ∧
j=1

n
Tijvj + ∧

j=1

n
αij �co f j yj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
βij �co f j yj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
Rijvj + ui tð Þ,

_Ri tð Þ ∈ −Ri tð Þ + �co f i yi tð Þð Þ½ � + ~ui tð Þ: ð8Þ

Obviously, the following set-valued maps

_xi tð Þ↪−aixi tð Þ + 〠
n

j=1
bij �co f j xj tð Þ

� �h i
+ diSi tð Þ + 〠

n

j=1
cijvj

+ ∧
j=1

n
Tijvj + ∧

j=1

n
αij �co f j xj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
βij �co f j xj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
Rijvj,

_Si tð Þ↪−Si tð Þ + �co f i xi tð Þð Þ½ �,

_yi tð Þ↪−aiyi tð Þ + 〠
n

j=1
bij �co f j xj tð Þ

� �h i
+ diRi tð Þ + 〠

n

j=1
cijvj

+ ∧
j=1

n
Tijvj + ∧

j=1

n
αij �co f j yj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
βij �co f j yj t − τj tð Þ

� �� �h i
+ ∨

j=1

n
Rijvj + ui tð Þ,

_Ri tð Þ↪−Ri tð Þ + �co f i yi tð Þð Þ½ � + ~ui tð Þ ð9Þ

have nonempty compact convex values. In view of the mea-
surable selection theorem, they are upper semicontinuous
and measurable. Thus, if xiðtÞ and SiðtÞ are the solutions of
system (1) and yiðtÞ and RiðtÞ are the solutions of system
(3), there exist measurable functions

γ tð Þ, η tð Þ: −τ, T½ Þ⟶ℝn, ð10Þ

where γ = ðγ1, γ2,⋯,γnÞT , η = ðη1, η2,⋯,ηnÞT , γj ∈ �co½ f jðxj
ðtÞÞ�, ηj ∈ �co½ f jðyjðtÞÞ� for a.e. t ∈ ½−τ, TÞ such that

STM : _xi tð Þ = −aixi tð Þ + 〠
n

j=1
bijγj tð Þ + diSi tð Þ + 〠

n

j=1
cijvj + ∧

j=1

n
Tijvj

+ ∧
j=1

n
αijγj t − τ j tð Þ

� �
+ ∨

j=1

n
βijγj t − τ j tð Þ

� �
+ ∨

j=1

n
Rijvj

LTM : _Si tð Þ = −Si tð Þ + γi tð Þ

,

8>>>>>><
>>>>>>:

ð11Þ
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STM : _yi tð Þ = −aiyi tð Þ + 〠
n

j=1
bijηj tð Þ + diRi tð Þ + 〠

n

j=1
cijvj + ∧

j=1

n
Tijvj

+ ∧
j=1

n
αijηj t − τj tð Þ

� �
+ ∨

j=1

n
βijηj t − τ j tð Þ

� �
+ ∨

j=1

n
Rijvj + ui tð Þ

LTM : _Ri tð Þ = −Ri tð Þ + ηi tð Þ + ~ui tð Þ:

8>>>>>><
>>>>>>:

:

ð12Þ
From (11) and (12), the errors are defined as

ei tð Þ = yi tð Þ − xi tð Þ, zi tð Þ = Ri tð Þ − Si tð Þ, i = 1, 2,⋯, n: ð13Þ

Then, the error systems can be obtained by

_ei tð Þ = −aiei tð Þ + 〠
n

j=1
bij ηj tð Þ − γj tð Þ
h i

+ dizi tð Þ
(

+ ∧
j=1

n
αij ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i
+ ∨

j=1

n
βij η j t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i
+ ui tð Þ _zi tð Þ = −zi tð Þ + ηi tð Þ − γi tð Þ½ � + ~ui tð Þ

ð14Þ

with initial conditions

ei0 sð Þ = ϕei sð Þ, zi0 sð Þ = ϕzi sð Þ, s ∈ −τ, 0½ �, i = 1, 2,⋯, n: ð15Þ

Let εðtÞ = ðe1ðtÞ,⋯,enðtÞ, z1ðtÞ,⋯,znðtÞÞT and ε0ðsÞ =
ðe10ðsÞ,⋯,en0ðsÞ, z10ðsÞ,⋯,zn0ðsÞÞT , s ∈ ½−τ, 0�:

Definition 2. The drive system (1) and response system (3)
are said to be finite-time robustly synchronized, if there
exists a time t∗ such that jjεðt∗Þjj = 0 and jjεðtÞjj = 0 for
t > t∗.

Definition 3. The origin of error system (14) is said to be
globally fixed-time stable if it is globally uniformly finite-
time stable and the settling time T is globally bounded; i.e.,
there exists Tmax ≥ 0 such that Tðε0Þ ≤ Tmax for ε0 ∈ℝ2n.

Definition 4. The drive-response systems (1)-(3) are said to
achieve robust fixed-time synchronization if there exist a fixed
time Tmax and a settling time function Tðε0ðsÞÞ such that

lim
t⟶T ε0 sð Þð Þ

ε tð Þj jj = 0,

ε tð Þ = 0,∀≥T ε0 sð Þð Þ,
T ε0 sð Þð Þ ≤ Tmaxforε0 sð Þ ∈ C2n −τ, 0½ �,

8>>><
>>>:

ð16Þ

where k·k represents the Euclidean norm and C2n½−τ, 0� is a
2n − dimessional continuous function space on ½−τ, 0�.

Definition 5 (see [35]). A function VðxÞ: ℝn ⟶ℝ is C −
regular, if it is

(1) Regular in ℝn

(2) Positive definite, i.e., VðxÞ > 0 for x ≠ 0 and Vð0Þ = 0

(3) Radially unbounded, i.e., VðxÞ⟶ +∞ as kxk⟶∞

Lemma 6. [36] If VðxÞ: ℝn ⟶ℝ is C − regular and xðtÞ is
absolutely continuous on any compact subinterval of ½0,∞Þ,
then xðtÞ and VðxðtÞÞ are differential at t for a.e. t ∈ ½0,∞Þ.
Furthermore we have

V ′ x tð Þð Þ = ξTx′ tð Þ = 〠
n

p=1
ξpxp′ tð Þ,∀ξ ∈ ∂V x tð Þð Þ, ð17Þ

where ∂VðxÞ = co½lim j⟶∞∇VðxjÞ: xj ⟶ x, xj ∉M ∪ΩV � is
the generalized gradient of V at x and co½·� denotes the convex
hull. M ⊂ℝn is a set of measure zero and ΩV ⊂ℝn is a set of
nondifferentiable points of function V .

Lemma 7. [38] If there exists a continuous radially
unbounded function V : ℝ2n ⟶ℝ+ such that

V εð Þ = 0⇔ ε = 0: ð18Þ

(1) For some ρ, π > 0, 0 < p ≤ 1, q > 1, any solution εðtÞ of
system (12) satisfies

D+V ε tð Þð Þ ≤ −ρVp ε tð Þð Þ − πVq ε tð Þð Þ for ε tð Þ ∈ℝ2n \ 0f g,
ð19Þ

and then, the error system (14) is global fixed-time stable at
the origin; moreover, the following estimate admits

V tð Þ ≡ 0, t ≥ T ε0ð Þ, ð20Þ

with the settling time bound by Tðε0Þ ≤ Tmax = ð1/ρð1 − pÞÞ
+ ð1/πðq − 1ÞÞ, where D+VðεðtÞÞ is the upper right-hand
Dini derivative and ε and ε0 are defined by Definition 3.

Lemma 8 (see [21]). For i, j = 1, 2,⋯, n, assume that xj, yj,
αij, βij ∈ℝ, f j : ℝ⟶ℝ. Then

∧
j=1

n
αij f j xj

� �
− ∧

j=1

n
αij f j yj

� �








 ≤ 〠

n

j=1
αij


 

 f j xj� �

− f j yj
� �


 




∨
j=1

n
βij f j xj

� �
− ∨

j=1

n
βij f j yj

� �








 ≤ 〠

n

j=1
βij




 


 f j xj� �
− f j yj
� �


 


:

ð21Þ

Lemma 9 (see [39]). Assume that xpðtÞ ≥ 0 and 0 < α ≤ 1, β
> 1. Then, the following inequalities hold:

〠
n

p=1
xαp ≥ 〠

n

p=1
xp

 !α

, 〠
n

p=1
xβp ≥ n1−β 〠

n

p=1
xp

 !β

: ð22Þ
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3. Main Results

We design the following discontinuous control inputs:

where i = 1, 2,⋯, n, 0 ≤ p1 < 1, p2 > 1,j1i and j2i are positive,
and r1i, r2i, l1i, l2i, h1i, h2i, and c1i need to satisfy some
conditions.

Theorem 10. Suppose that the conditions (H1) and (H2) hold,
systems (1) and (3) can be robustly synchronized by the con-
trol law (23) in a fixed time, provided that

lim
t⟶+∞

sup −ai tð Þ + 〠
n

j=1
bij tð Þ


 

 + αij tð Þ



 

 + βij tð Þ



 


� �

λ2j

" #

< r1i + r2i − λ2i,
ð24Þ

lim
t⟶+∞

sup 〠
n

j=1
bji tð Þ



 


λ1i

" #
< j1i − λ1i, ð25Þ

lim
t⟶+∞

sup 〠
n

j=1
αji tð Þ


 

 + βji tð Þ




 


� �
λ1i

" #
< c1i, ð26Þ

lim
t⟶+∞

sup di tð Þj j < 1 + j2i: ð27Þ

Furthermore, limt⟶Tmax
jjεðtÞjj = 0 and εðtÞ = 0 for t ≥

Tmax, where the settling time Tmax is given as

Tmax =
1

l̂ 1 − p1ð Þ
+

1
ĥ 2nð Þ1−p2 p2 − 1ð Þ

, ð28Þ

where l̂ =min fl1i, l2i, i = 1, 2,⋯,ng, ĥ =min fh1i, h2i, i = 1, 2,
⋯,ng.

Proof. Construct the following Lyapunov function:

V tð Þ = V1 tð Þ +V2 tð Þ, ð29Þ

where V1ðtÞ =∑n
i=1 jeiðtÞj, V2ðtÞ =∑n

i=1 jziðtÞj. It is easy to
see that VðtÞ is C − regular. Compute the derivative of

V1ðtÞ along the trajectories of error system (14); then

_V1 tð Þ = 〠
n

i=1

d ei tð Þj j
dt

= 〠
n

i=1
sign ei tð Þð Þ −ai tð Þei tð Þ + 〠

n

j=1
bij tð Þ ηj tð Þ − γj tð Þ

h i"

+ di tð Þzi tð Þ + ∧
j=1

n
αij tð Þ η j t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i
+ ∨

j=1

n
βij tð Þ ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i
+ ui tð Þ

�
:

ð30Þ

By assumption (H2), we have

〠
n

i=1
sign ei tð Þð Þ〠

n

j=1
bij tð Þ ηj tð Þ − γj tð Þ

h i

≤ 〠
n

i=1
〠
n

j=1
bij tð Þ


 

 λ1j yj − xj




 


 + λ2j
h i

= 〠
n

i=1
〠
n

j=1
bij tð Þ


 

λ1j ej

 

 + 〠

n

i=1
〠
n

j=1
bij tð Þ


 

λ2j:

ð31Þ

From Lemma 8 and assumption (H2), we have

〠
n

i=1
sign ei tð Þð Þ ∧

j=1

n
αij ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i

≤ 〠
n

i=1
∧
j=1

n
αij ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i










≤ 〠
n

i=1
〠
n

j=1
αij


 

 η j t − τj tð Þ

� �
− γ j t − τj tð Þ

� �


 



≤ 〠

n

i=1
〠
n

j=1
αij


 

 λ1j ej t − τj tð Þ

� �

 

 + λ2j
� 	

= 〠
n

i=1
〠
n

j=1
αij


 

λ1j ej t − τj tð Þ

� �

 

 + 〠
n

i=1
〠
n

j=1
αij


 

λ2j

ui tð Þ = −r1i sign ei tð Þð Þ − j1i ei tð Þj j − l1i sign ei tð Þð Þ ei tð Þj jp1 − h1i sign ei tð Þð Þ ei tð Þj jp2 − c1i sign ei tð Þð Þ ei t − τi tð Þð Þj j
~ui tð Þ = −r2i sign zi tð Þð Þ − j2i zi tð Þj j − l2i sign zi tð Þð Þ zi tð Þj jp1 − h2i sign zi tð Þð Þ zi tð Þj jp2 ,

(
ð23Þ
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〠
n

i=1
sign ei tð Þð Þ ∨

j=1

n
βij ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i

≤ 〠
n

i=1
∨
j=1

n
βij ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i










≤ 〠
n

i=1
〠
n

j=1
βij




 


 η j t − τj tð Þ
� �

− γ j t − τj tð Þ
� �


 




≤ 〠
n

i=1
〠
n

j=1
βij




 


 λ1j ej t − τj tð Þ
� �

 

 + λ2j

� 	

= 〠
n

i=1
〠
n

j=1
βij




 


λ1j ej t − τj tð Þ
� �

 

 + 〠

n

i=1
〠
n

j=1
βij




 


λ2j:

ð32Þ

From the first equation of (23), we have

〠
n

i=1
sign ei tð Þð Þui tð Þ = 〠

n

i=1
sign ei tð Þð Þ −r1i sign ei tð Þð Þ½

− j1i ei tð Þj j − l1i sign ei tð Þð Þ ei tð Þj jp1 − h1i sign ei tð Þð Þ ei tð Þj jp2

− c1i sign ei tð Þð Þ ei t − τi tð Þð Þj j�≤−〠
n

i=1
r1i − 〠

n

i=1
j1i ei tð Þj j

− 〠
n

i=1
l1i ei tð Þj jp1 − 〠

n

i=1
h1i ei tð Þj jp2 − 〠

n

i=1
c1i ei t − τi tð Þð Þj j:

ð33Þ

From (30) to (33), we obtain

_V1 tð Þ ≤ 〠
n

i=1
−r1i − ai + 〠

n

j=1
bij


 

 + αij



 

 + βij




 


� �
λ2j

" #

+ 〠
n

i=1
−j1i + 〠

n

j=1
bji


 

λ1i

" #
ei tð Þj j

+ 〠
n

i=1
−c1i + 〠

n

j=1
αji



 

λ1i + 〠
n

j=1
βji




 


λ1i
" #

ei t − τi tð Þð Þj j

− 〠
n

i=1
l1i ei tð Þj jp1 − 〠

n

i=1
h1i ei tð Þj jp2 + 〠

n

i=1
di zi tð Þj j:

ð34Þ

Similar to the above certificate, we have

_V2 tð Þ = 〠
n

i=1

d zi tð Þj j
dt

= 〠
n

i=1
sign zi tð Þð Þ −zi tð Þ + ηi tð Þ − γi tð Þð Þ + ~ui tð Þ½ �:

ð35Þ

According to assumption (H2), we have

〠
n

i=1
sign zi tð Þð Þ ηi tð Þ − γi tð Þð Þ ≤ 〠

n

i=1
λ1i yi − xij j + λ2i½ �

= 〠
n

i=1
λ1i eij j + 〠

n

i=1
λ2i:

ð36Þ

From the second equation of (23), we have

〠
n

i=1
sign zi tð Þð Þ~ui tð Þ = 〠

n

i=1
sign zi tð Þð Þ −r2i sign zi tð Þð Þ½

− j2i zi tð Þj j − l2i sign zi tð Þð Þ zi tð Þj jp1

− h2i sign zi tð Þð Þ zi tð Þj jp2 � ≤ −〠
n

i=1
r2i − 〠

n

i=1
j2i zi tð Þj j

− 〠
n

i=1
l2i zi tð Þj p1 − 〠

n

i=1
h2i zi tð Þj













p2

: ð37Þ

In view of (35)-(37), we obtain

_V2 tð Þ ≤ −〠
n

i=1
zi tð Þj j + 〠

n

i=1
λ1i eij j + 〠

n

i=1
λ2i − 〠

n

i=1
r2i

− 〠
n

i=1
j2i zi tð Þj j − 〠

n

i=1
l2i zi tð Þj jp1 − 〠

n

i=1
h2i zi tð Þj jp2 :

ð38Þ

From (25), (34), (38), and Lemma 9, we have

_V tð Þ ≤ 〠
n

i=1
−r1i − r2i − ai + λ2i + 〠

n

j=1
bij


 

 + αij tð Þ



 

 + βij tð Þ



 


� �

λ2j

" #

+ 〠
n

i=1
−j1i + λ1i + 〠

n

j=1
bji


 

λ1i

" #
ei tð Þj j

+ 〠
n

i=1
−c1i + 〠

n

j=1
αji tð Þ


 

λ1i + 〠

n

j=1
βji tð Þ



 


λ1i

" #
ei t − τi tð Þð Þj j

− 〠
n

i=1
l1i ei tð Þj jp1 − 〠

n

i=1
h1i ei tð Þj jp2 + 〠

n

i=1
di − 1 − j2ið Þ zi tð Þj j

− 〠
n

i=1
l2i zi tð Þj jp1 − 〠

n

i=1
h2i zi tð Þj jp2 ≤ −̂l〠

n

i=1
ei tð Þj jp1 + zi tð Þj jp1� �

− ĥ〠
n

i=1
ei tð Þj jp2 + zi tð Þj jp2� �

≤ −̂l 〠
n

i=1
ei tð Þj j + zi tð Þj jð Þ

" #p1

− ĥ 2nð Þ1−p2 〠
n

i=1
ei tð Þj j + zi tð Þj jð Þ

" #p2

= −̂l V1 tð Þð Þp1 − ĥ 2nð Þ1−p2 V2 tð Þð Þp2 :
ð39Þ

Based on Lemma 7, the error system (14) gets fixed-time
stability which yields that systems (11) and (12) achieve the
robust fixed-time synchronization, i.e., systems (1) and (3)
can be robustly synchronized by the control law (23). In
addition, the settling time is given as

Tmax =
1

l̂ 1 − p1ð Þ
+

1
ĥ 2nð Þ1−p2 p2 − 1ð Þ

: ð40Þ

Now, we consider robust finite-time synchronization for
systems (1) and (3) under discontinuous adaptive controller.
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Design the following discontinuous control inputs:

ui tð Þ = −~r1i sign ei tð Þð Þ − sign ei tð Þð Þξi tð Þ −~c1i sign ei tð Þð Þ ei t − τi tð Þð Þj j
~ui tð Þ = −~r2i sign zi tð Þð Þ − sign zi tð Þð Þηi tð Þ,

(

ð41Þ

where i = 1, 2,⋯, n,~r1i,~r2i and ~c1i are positive constants. For
ξiðtÞ ≠ 0 and ηiðtÞ ≠ 0, the feedback gains ξiðtÞ and ηiðtÞ are
adapted according to the updated laws as follows:

_ξi tð Þ = ω1i ei tð Þj j, _ηi tð Þ = ω2i zi tð Þj j, ω1i, ω2i > 0: ð42Þ

For ξiðtÞ ≡ 0 and ziðtÞ ≡ 0, let ξiðtÞ ≡ ξ∗ and ηiðtÞ ≡ η∗,
where ξ∗ and η∗ are sufficiently large constants.

Theorem 11. Suppose that the conditions (H1) and (H2) hold,
systems (1) and (3) can be robustly finite-time synchronized
by the control law (41), provided that

lim
t⟶+∞

inf −ξi tð Þ + ξ∗i − λ1i − 〠
n

j=1
bji tð Þ


 

λ1i

" #
≥ 0, ð43Þ

lim
t⟶+∞

inf ~c1i − 〠
n

j=1
αji tð Þ


 

λ1i − 〠

n

j=1
βji tð Þ



 


λ1i

" #
≥ 0, ð44Þ

lim
t⟶+∞

inf −ηi tð Þ + η∗i − di tð Þ + 1½ � ≥ 0: ð45Þ

Furthermore, the settling time for finite-time robust syn-
chronization can be estimated by t ≤~t = ~Vð0Þ/∑n

i=1 Ξi, where
~Vð0Þ is defined by (46).

Proof. Construct the following Lyapunov function:

~V tð Þ = ~V1 tð Þ + ~V2 tð Þ, ð46Þ

where

~V1 tð Þ = 〠
n

i=1
ei tð Þj j + zi tð Þj jð Þ,

~V2 tð Þ = 1
2ω1i

〠
n

i=1
ξi tð Þ − ξ∗i
� �2 + 1

2ω2i
〠
n

i=1
ηi tð Þ − η∗ið Þ2:

ð47Þ

ω1i and ω2i are defined by (42). Recalling the proof of
Theorem 10, we need estimate ∑n

i=1 sign ðeiðtÞÞuiðtÞ and
∑n

i=1 sign ðziðtÞÞ~uiðtÞ. From the first equation of (41), we

have

〠
n

i=1
sign ei tð Þð Þui tð Þ = 〠

n

i=1
sign ei tð Þð Þ −~r1i sign ei tð Þð Þ½

− sign ei tð Þð Þξi tð Þ −~c1i sign ei tð Þð Þ ei t − τi tð Þð Þj j�

≤ −〠
n

i=1
~r1i − 〠

n

i=1
ξi tð Þ − 〠

n

i=1
~c1i ei t − τi tð Þð Þj j:

ð48Þ

From the second equation of (41), we have

〠
n

i=1
sign zi tð Þð Þ~ui tð Þ = 〠

n

i=1
sign zi tð Þð Þ −~r2i sign zi tð Þð Þ½

− sign zi tð Þð Þηi tð Þ� ≤ −〠
n

i=1
~r2i − 〠

n

i=1
ηi tð Þ:

ð49Þ

Furthermore, we have

~V2 tð Þ = 〠
n

i=1
ξi tð Þ − ξ∗i
� �

ei tð Þj j + 〠
n

i=1
ηi tð Þ − η∗ið Þ zi tð Þj j: ð50Þ

From (46) to (50) and the proof of Theorem 10, we have

~V tð Þ ≤ −〠
n

i=1
~r1i +~r2i + ai tð Þ − λ2i − 〠

n

j=1
bij tð Þ


 

 + αij tð Þ



 

 + βij tð Þ



 


� �

λ2j

" #

− 〠
n

i=1
−ξi tð Þ + ξ∗i − λ1i − 〠

n

j=1
bji tð Þ


 

λ1i

" #
ei tð Þj j

− 〠
n

i=1
~c1i − 〠

n

j=1
α ji tð Þ


 

λ1i − 〠

n

j=1
βji tð Þ



 


λ1i

" #
ei t − τi tð Þð Þj j

− 〠
n

i=1
−ηi tð Þ + η∗i − di tð Þ + 1ð Þ zi tð Þj j:

ð51Þ

Condition (43) and the above inequality lead to

~V tð Þ ≤ −〠
n

i=1
Ξi f ora:e:t ≥ 0: ð52Þ

where Ξi is defined by (43). Integrate both sides of the
inequality (50) on ½0, t�, then

~V tð Þ ≤ ~V 0ð Þ − 〠
n

i=1
Ξi for t ≥ 0: ð53Þ

Thus,

~V tð Þ < 0 for t > t0 =
~V 0ð Þ

∑n
i=1 Ξi

, ð54Þ
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which leads to a contradiction. When t1 < t0, we claim that

~V tð Þ ≡ 0 for t ≥ t1: ð55Þ

If ~Vðt∗Þ > 0fort∗ > t1, then, there exists some nondegen-
erate interval ðta, tbÞ ⊂ ðt1, t∗Þ such that ~VðtÞ > 0 for all t ∈

ðta, tbÞ contradicts with (52). Hence, (55) holds. By Defini-
tion 2, we obtain the desired result.

Remark 12. In a recent paper, Zhou and Bao [40] considered
the fixed-time synchronization for competitive neural
networks with Gaussian-wavelet-type activation functions.
Gaussian-wavelet-type activation functions are nonmonotonic

xj

–3 –2 –1 0 1 2 3
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

f j (
x j)

fj (0–)

fj (0+)

co [fj (0)]

Figure 1: Discontinuous activation functions f jðxjÞðj = 1, 2Þ for systems (57) and (58).
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Figure 2: State trajectories of error system (60) without control.
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and continuous. However, the activation functions of this
paper are nonmonotonic and discontinuous. Hence, this paper
deals with more complicated activation functions and general-
izes the corresponding results of [40].

Remark 13. In Theorem 10, a kind of discontinuous control
input has been designed for achieving the fixed-time syn-
chronization for the systems (1) and (3). It is noted that

the fixed time in Theorem 10 is independent on the system
elements.

Remark 14. We note that the control inputs (23) contain the
discontinuous sign functions; as a hard switcher, it may be
caused to undesirable chattering [20]. For avoiding the chat-
tering, we can replace the sign function by a continuous
tanh ðÞ function to remove undesirable chattering. Hence,
the control law (23) can be replaced by

4. Numerical Examples

Example 1. Consider the following discontinuous fuzzy com-
petitive neural networks as the drive system:

STM : _xi tð Þ = −aixi tð Þ + 〠
2

j=1
bij f j xj tð Þ

� �
+ diSi tð Þ + 〠

2

j=1
cijvj + ∧

j=1

2
Tijvj

+ ∧
j=1

2
αij f j xj t − τj tð Þ

� �� �
+ ∨

j=1

2
βij f j xj t − τj tð Þ

� �� �
+ ∨

j=1

2
Rijvj

LTM : _Si tð Þ = −Si tð Þ + f i xi tð Þð Þ,

8>>>>>>><
>>>>>>>:

ð57Þ

and the response system:

STM : _yi tð Þ = −aiyi tð Þ + 〠
2

j=1
bij f j yj tð Þ

� �
+ diRi tð Þ + 〠

2

j=1
cijvj + ∧

j=1

2
Tijvj

+ ∧
j=1

2
αij f j yj t − τj tð Þ

� �� �
+ ∨

j=1

2
βij f j yj t − τj tð Þ

� �� �
+ ∨

j=1

2
Rijvj + ui tð Þ

LTM : _Ri tð Þ = −Ri tð Þ + f i yi tð Þð Þ + ~ui tð Þ:

8>>>>>>><
>>>>>>>:

ð58Þ

Let

ei tð Þ = yi tð Þ − xi tð Þ, zi tð Þ = Ri tð Þ − Si tð Þ, i = 1, 2: ð59Þ

0 10 20 30 40 50 60 70
−1

–0.5

0

0.5

1

1.5

t

e1(t)
z1(t)

e2(t)
z2(t)

Figure 3: State trajectories of error system (60) by the control law (23).

ui tð Þ = −r1i tanh ei tð Þð Þ − j1i ei tð Þj j − l1i tanh ei tð Þð Þ ei tð Þj p1 − h1i tanh ei tð Þð Þ ei tð Þjj jp2 − c1i sign ei tð Þð Þ ei t − τi tð Þð Þj j
~ui tð Þ = −r2i tanh zi tð Þð Þ − j2i zi tð Þj j − l2i tanh zi tð Þð Þ zi tð Þj p1 − h2i sign zi tð Þð Þ zi tð Þjj jp2 :

(
ð56Þ
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Then, the error systems can be obtained by

where

a1 tð Þ = a2 tð Þ = 1:5 + cos t, bij
� �

2×2 =
4 + sin t −6 + 2 cos t

−6 + 2 cos t 4 + sin t

 !
,

d1 tð Þ = d2 tð Þ = 1, αij
� �

2×2 =
−5 + sin t −4 + 2 cos t

−3 + 2 cos t −5 + sin t

 !
,

βij

� �
2×2

=
−7 + 2 cos t −3 + sin t

−5 + 2 sin t −7 + 2 cos t

 !
, τ1 tð Þ = τ2 tð Þ = 2et

1 + et
,

f1 xð Þ = f2 xð Þ =
0:2 tanh xð Þ + 0:4 cos x − 0:5, x ≥ 0 ;

0:2 tanh xð Þ++0:3 sin x + 0:6, x < 0:

(

ð61Þ

It is easy to see that the activation function f jðxÞ is dis-
continuous and has a discontinuous point x = 0 and �co½ f ið
0Þ� = ½ f +i ð0Þ, f −i ð0Þ� = ½−0:1,0:6�, i = 1, 2. Obviously, assump-
tions (H1) and (H2) hold. This fact can be seen in Figure 1.

The initial values of the system (57) satisfy the following
conditions:

x1 sð Þ = −3, x2 sð Þ = 5, S1 sð Þ = −2:8, S2 sð Þ = 6:5, s ∈ −2, 0½ �:
ð62Þ

The initial values of corresponding slave system (58) are

y1 sð Þ = −2:5, y2 sð Þ = 4:6, R1 sð Þ = −0:8, R2 sð Þ = 4:5, s ∈ −2, 0½ �:
ð63Þ

State trajectories of error system (60) without control are
shown in Figure 2. From Figure 2, we find that systems (57)
and (58) are not robustly synchronized.

Choose

r1i = 9:25, j1i = 4:6, l1i = 3:03, h1i = 2, c1i = 12,

r2i = 8:05, j2i = 3:2, l2i = 2:56, h2i = 2, i = 1, 2,
ð64Þ

as parameters of controller (23). Moreover, we choose

λ1i = 0:2, λ2i = 0:5, i = 1, 2: ð65Þ

By simple computation, we can have

lim
t⟶+∞

sup −ai tð Þ + 〠
2

j=1
bij tð Þ


 

 + αij tð Þ



 

 + βij tð Þ



 


� �

λ2j

" #

= 15:9 < 16:3 = r1i + r2i − λ2i,

lim
t⟶+∞

sup 〠
2

j=1
bji tð Þ



 


λ1i

" #
= 2:6 < 4:4 = j1i − λ1i,

lim
t⟶+∞

sup 〠
2

j=1
αji tð Þ


 

 + βji tð Þ




 


� �
λ1i

" #
= 10:9 < 12 = c1i,

lim
t⟶+∞

sup di tð Þj j = 1 < 4:2 = 1 + j2i: ð66Þ

Hence, all the conditions in Theorem 10 are satisfied.
Thus, the response system (58) can robustly synchronize
with the drive system (57) in a fixed time under the control
law (23). Obviously, l̂ = 3:03, ĥ = 2: Choosing p1 = 0:5, p2 =
1:5, by Theorem 10, we have

Tmax =
1

l̂ 1 − p1ð Þ
+

1
ĥ41−p2 p2 − 1ð Þ

≈ 2:66: ð67Þ

From Figure 3, the error system (60) converges to 0
under the control law (23) which means systems (57) and
(58) are robustly synchronized in a fixed time. The simula-
tions show that the main results of robust fixed-time syn-
chronization established in the present paper are correct.

Remark 15. It is well known that Lyapunov method has been
widely used for studying dynamic behaviors of neural net-
works. In this paper, designing some novel discontinuous con-
trol inputs and constructing proper Lyapunov-Krasovskii
functional, we obtain some sufficient criteria for achieving
fixed-time synchronization, and the corresponding setting
times are estimated. Our results and the proposed methods
are different from for continuous neural network systems
(see [6–8]). And the proposed analysis method is also easy to
extend to the case of other type neural networks. In the future,
we will further study the synchronization problem and/or the
Markovian jumping problem of competitive neural networks.

5. Conclusions and Discussions

This paper is devoted to studying the finite-time and fixed-
time robust synchronization of fuzzy competitive neural net-
works with discontinuous activations. For achieving fixed-

_ei tð Þ = −aiei tð Þ + 〠
2

j=1
bij ηj tð Þ − γj tð Þ
h i

+ dizi tð Þ + ∧
j=1

2
αij ηj t − τj tð Þ

� �
− γj t − τj tð Þ

� �h i
_zi tð Þ = −zi tð Þ + ηi tð Þ − γi tð Þ½ � + ~ui tð Þ,

_zi tð Þ = −zi tð Þ + ηi tð Þ − γi tð Þ½ � + ~ui tð Þ,

8>><
>>:

ð60Þ
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time synchronization of the competitive neural networks, we
consider the fixed-time stability problem of the error system
between the drive-response systems which is an effective
method to study synchronization problems. We construct
a novel discontinuous state-feedback control inputs to the
response competitive neural system. Then, based on Filippov
solutions for discontinuous differential system, we obtain
some new criteria for guaranteeing fixed-time robust syn-
chronization of fuzzy competitive neural networks with
discontinuous activations. Fixed-time synchronization is
the basis of finite-time synchronization. Hence, we further
construct a simple switching adaptive control to the response
competitive neural systems which can effectively deal with
the finite-time robust synchronization between the response
competitive neural systems and the drive competitive neural
systems. It should be pointed out that we first study the syn-
chronization control of competitive neural networks with dis-
continuous activations. Finally, a simulation numerical has
been shown to verify the correctness of our theoretical results.
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